Atari Floppy Disk
Copy Protection

By Jean Louis-Guérin (DrCoolZic)
Revision 1.4 — June 24, 2015

Atari Floppy Disk Copy Protection

Table of Contents

TabIE OF CONTENTS ..o e e e e e e e 2
Chapter 1. PreSentalion ... e e e e e e e e e e e e r et e e e e e 4
Chapter 2. Copy protections detail deSCriptionccccccoiuumiimiiiiiiiiieees 5
2.1 Protections Dased 0N GaLAccoivieiiiie i 5
211 NUMDBET OF traCKS (NOT) ..ci ittt ettt e e e e e b e e e 6
2.1.2 SNIfLEA TrACKS (SFT) ¢eeieiiiiiie ittt ettt et e e et b e e e e st e e e e e sbb e e e e snneeeean 7
2.1.3 Track Layout Pattern (TLP)ueeei ittt e e es 9
2.1.4 NUMDBEr Of SECIOIS (NOS)ttt e e 9
2.15 SECLON SIZES (SSZ)..eitiiitiite etttk et e s bttt e s bbb e e e s bb e e e s anb b e e e e annne s 10
2.1.6 INVAITI ID FIEIA (1IF) 1ttt ettt st e e et e st e e snbeeenneas 10
2.1.7 Duplicate Sector NUMDBEr (DSIN)uuuiiiiieeeiiiiiiiiie e e e e sscttre e e e e e s s r e e e e e s e snntaee e e e e e e s annnnnaees 12
2.1.8 SeCtor WIthin SECIOI (SWS) ... 13
2.1.9 NON Standard DAM (NSD)uuuuuuiuiuieiiieieieieiuieieierererererereree ... 13
2.1.10 SecCtor With NO ID (SNI)...eeiiiiiiiiie ittt ettt e ne e snreeennee e 14
2.1.11 Sector With NO Data (SND)cccooiii e 14
2.1.12 Data CRC EITOI (DCE)uutiiiiiiiiii ettt ettt ettt abb e s et e eenbne e e e e 14
2.1.13 DAt TrACK (DTT) teiiiuiieeiiitiiee ittt ettt e sttt sttt e et e e s ettt e s et e e e s anbb e e e e anbn e e e enbeeeeenene 15
2.1.14 Hidden Data int0 GAP (HDG)uuiiiiiiiiieiiiie ettt 15
2.1.15 Hidden data into nonstandard tracks (HDT)c..ueieiiiriieiiiiiie e 15
2.1.16 Invalid Data in Gap (IDG)ceeiuueiieiiitiee ittt ettt sttt e s e e s e e e 16
2.1.17 Invalid Sync-mark SEQUENCE (ISS)utiiiiiiiieiiiiite ettt 16
2.1.18 Partially formatted traCk (PUT) ..o 16
2.1.19 FUZZY SECIOT (FZS) .utiiiiiiie ittt ettt ettt ettt et s e bttt sab et e sbn e e snne e s bn e e snreeeneeens 17
2.1.20 FUZZY TrACK (FZT) tiiitiie ettt ettt ettt ettt et st e b e ekt e st e e smn e e snne e s nbn e e snreeanneens 17
2.2 Protections based ON tIMINQuuuuieiuiiiieiiiieii e e 18
221 Long / Short SECIOr (LGS & SHS) ...uuuuiiiiiiiiiiiiiiiiiiiiiiiiieieisieisieieierereeeeeeeeseeanrsrsreesesrsesrsrnrnrsrnnes 18
2.2.2 LoNg/Short TraCk (LGT & SHT) .uuuuuiiiiiiiiiiiiieiiiiieiiisieisisisisisrsrersisrsrersrsrsesrsrsrsrsrsrsrssre. 19
2.2.3 Sector Bit-rate Variation (SBV)uiiiiiiiiieiiiie ettt 19
224 NO FIUX AFEA (NFA) ..ottt ettt ettt ettt e et e e e st e e e sabb e e e e sbbeeeeanbneeeeans 20
Chapter 3. Preservation of Atari floppy diSKSuceiiiiiiiiiiiicce e, 21
3.1 Cleaning a floppy disk to create COrreCt imagecoooeeeeeee e 21
3.2 Why do we need several revolutions for preservation?cccccccevvviviiiieeeeeee 21
3.3 KryofluX SOt pPreSentation i it eeeseeeseeeaeeesrarsrnrsenrsrnenrsrnres 23
3.4 Supercard Pro short presentation ... 23
Chapter 4. Technical INfTOrmMationuuuuuuiiieiiiiii e 24
4.1 Atari LOW-LeVel FOIMALS ...ooiiiiiiieiiee et e e e e e e e e e e s e e 24
4.1.1 Format for 9/10/11 Sectors Of 512 BYLESueeiiiiiiiieiiiiiee ettt ettt et 25
4.1.2 “Standard” 128-256-512-1024 Bytes / SeCtor FOrMaLlcoocuveieiiiiiieiiiiiie e 26
4.2 WDZL1772 DPLL INPUL CIFCUITIY weviiiiiiiiiie ettt et e e e e 27
4.2.1 (DS ot o] 1 o] o EU PP T PP PPRTTP 27
4.2.2 WD1772 Detection of FUzzy BOrder BilS ... 29
4.3 WD1772 MFM traCK lanQUEAGEeeeiiieeiiiiiiiie ettt et ee e e e e s eananeeeeae s 30
4.4 WD1772 Synchronization (Sync marks detection)........cccoiiiiiiiiiiiiiiiiiiieee e 31
4.5 False SYNC Mark deteCtiONooi i 32
4.6 OVErlappPing SYNC MAIKcueiiiiiii it e et e e e e e s ebaaeeeaaaeaeaaes 32
4.6.1 Overlapping $4489-$4489 (BAL-BAL) ..eecuieiie e eie ettt s e e sneee e 32
4.6.2 Overlapping $5224-$4489 (BC2-BAL) ...cuii ettt rtee e s e e snae e s nreeenneee e 33
4.6.3 Overlapping $4489-$5224 (BAL-BC2) ...ccuueeiieee e eie e eee e e e stee e s e e snee e e neeeenneee e 33
4.6.4 Overlapping $5224-$5224 (BC2-BC2)...cuueeiiueeeiieeeiieeeiieeeieeeseeeseeesseeeesnaeeaneeeesneeesneeeesneeennes 33
4.6.5 INVALIA SYNC SEQUENCE ...ttt ettt e e e et e e e anb e e e nnbee e e e aneee 33
4.7 WD1772 Bug in Read/Write Track COMMAaNAScccceeiiiiiiiiiiiiee it 34
4.8 WD1772 CRC INTOMMALION ..ottt e e e e eeeaeeas 35
48.1 (61 2 (O o] 1 410U r=11 o] o IR UURTPPRRPP 35
4.8.2 Playing With the CRCt e e e e e e e e e e e nnneees 35
4.9 NO FIUX Area 0N DISK ...t e e e e e 37
49.1 Checking NFA With the WDL772 ...ttt e e e e e 37

Copyleft ® Jean Louis-Guérin (DrCoolZic) — Rev 1.4 - June 24, 2015 Page 2/ 77

Atari Floppy Disk Copy Protection

49.2 Special case of NO FIUX Area OVEI INAEXccceiiiiiuiiiiiiiieee ettt a e 38
4.10 Unformatted Diskette / TraCk / SECTOTcoi i 41
O R o (=YY= o = Lo] o PSPPSR 41
4.10.2 Partially unformatted traCkoociiiiiiiii e 42
O RS T == T i F= UV (o1 g = L (=0 T I = Lo G 44
4.10.4 Unformatted track etECHONevii ittt 44
4.10.5 How to reproduce unformatted areas on FIOPPY DiSKS?.....cuveveiiiiiiiiiiiieee e 44
4.11 LT 74 VA = =P RER 46
4.11.1 Flux Reversals in AMDIQUOUS ATa.........coiuiiiiiiiiiee ittt 46
4.11.2 MFM FIux Timing ViIOIATION.........cuuiiiiiiiiie e 46
O T YV Y1 1 RS PRP 47
4.12 RIS o] [T od T PP PP PTPRP 48
4.12.1 SECEOr WILE SPIICESieeiiei ittt et e et e et e e et e e s annre e e e e 48
4.12.2 TraCK WITEE SPIICES. ..ttt et e et e e s e e 49
4.13 [Lo Fo L= o I F= 1 = TR RTPPRPRURPRPN 50
4.13.1 Union Demo / Dragon Flight hidden seqUeNnCe............ccccccvveviiiiii e, 50
4.13.2 Jupiter Masterdrive hidden SEQUENCEcoovviiiiiiiiieceeeee et 50
4.13.3 Realm Of the Troll......coeeee e e e e e e 51
Chapter 5. Analysis Of GameES/ProgramsS. uuuuuuuiiuiiiiiiiiiiiiiiiiiiiienieeieeeeneeeeeeeaneeeneeee 52
51 Barbarian (from PSYgN0OSIS) ..c.iiuiiiiiiiiiie ittt 53
5.2 1270 o 1Y (o =1 o 1= P RRRR 54
5.3 100 o] > To Lo 1RO PERPRR 54
5.4 Computer Hits Volume 2 (BEaAU-JOIY)....c.oiiiiiiiiiiiiiie e 55
5.5 (DL o o] gV 2 (] S I ISR TPPRPROTPRPN 57
5.6 [>T 1 Y o 1 1 e | 1 P 58
5.7 DUNQEON MASTEN (FTL INC.) uuuuuiiiiiiiuiiiiiiieieieiaieieiaesterereearerernrerereesreeseersesrsrersrsrssnsnrnsnnnrnnnrsrnnns 59
5.8 oL o TN ¢} Lo = o P 60
5.9 LCTo] (o =T o 1N OO PP PPT PP PPRUPPRPPPN 61
5.10 Jupiter MasterdriVe ... 62
5.11 Kick Off 2 (ANCO SOFtWare 1990)........uuiiiiiiiiieiiiiie ettt e et e e sbaeee e 63
5.12 MAUPILT ISTANT ..ttt et e e et e e e e sbneeeeans 64
5.13 NIght Shift (US GOld) uveeeiiiiiiee ettt e e st e e e st e e e staae e e s nnreeaeans 64
5.14 L 1141 OSSR 65
5.15 OPEratioN NEPLUNE ...oiiiieiie ettt e s bbbt e s bbbt e e s atb et e e s nabe e e e s anneeeas 65
5.16 LeloT U | Lo W E I (= =T oa (o] a T ol N o €3 PP 65
5.17 POWET DL et e e e e e e s bbb e e e e e e e e e s bnbe e e e e e e e e e annnneees 66
5.18 SNEIMAN M4 ..ottt e e e e et e e e e e e s e bbb et e e e e e e s nbnbeeeaaaeaeannes 67
5.19 Y- T €] 1o 1= o TP P PP OTPUPUPPRPPPN 67
5.20 Theme Park Mystery (Image WOrKS)coooioiiiiiiiic e 68
5.21 THMIE OF 10T @ e e e e e e e st e et e e e e e aabreeeeae s 69
5.22 LI 1 o= U SO 70
5.23 V4 0T 0] 1 o H PP ST PPPPTTRRPPPURPPPPIN 71
5.24 ATA A4 = 1| IR @ 1o == o 72
5.25 A o 1 U) P PP PPPTPTTRRPPUPPPPRIN 72
Chapter 6. REMBIENCES ..o e e e e 73
6.1 DOCUMENTS [ATTICIES ..t e e e e e e e e s nneeees 73
6.2 FOTUMS TREEAAS .eeeiieee ittt e e et e e e e e e s et e e e e e e e e e e e nnnneees 73
6.3 REIALEA PAENTS ...oeiiiiiiiiiiei ettt e e e e et e e e e e e s e s anb b e e e e e e e e e e annneees 74
6.4 WWED SIEES .ttt e ettt e e e e e ettt e e e e e e e e n b b et e e e e e e e e e anbaeeeeaaeas 74
6.5 FDC & Related INfOrMationcoii i e e e s e e e e e e s ennnneees 74
6.6 1= L [T = (=T (=T Lo -SSR 74
Chapter 7. DoOCUMENT NISTOIY ..o e e e 76

Copyleft ® Jean Louis-Guérin (DrCoolZic) — Rev 1.4 - June 24, 2015 Page 3/ 77

Atari Floppy Disk Copy Protection

Chapter 1. Presentation

This document describes floppy disk protection mechanisms used on the Atari platform.
This type of copy protection is very old and, with many years of development and the usage
of sophisticated floppy disk hardware, it has conducted to humerous protection methods
frequently referred as key disk protection. The key disk protection method has at least two
obvious qualities: first, a key disk can be simultaneously used as protection and distribution
disk and second, this type of protection is very cheap but nevertheless hard to tamper with.
So, key disk protections have been widely used to protect Atari programs and games. To
fully understand the key disk based protections, you need to have some basic knowledge
about FD/FDC data and operation.

Some of the FD protection mechanisms are generic to many platforms while some are
directly related to a specific Floppy Disk Controller used on a specific platform. Therefore, in
order to get a general understanding, | have reviewed the FD protections mechanism used
on several platforms: Amiga, Commodore C64, PC, Tandy, Atari 8 bits and Atari ST 16 bits
(see the references section). Information about the different copy protection mechanisms
presented here is the result of experimentations and reading from the Web. Links to the
original information on Web sites can be found at the end of this document in the references
section.

In order to validate this document, | have analyzed the protections of many original floppy

disks with several programs that | have developed over time:

B For detailed analysis of timing information, the first program that | have created is called
Analyze. It runs on Atari and PC. This program reads the flux reversals stream files
produced on Atari by the Discovery Cartridge and performs a detailed analysis. This
program takes its root in experiments | have done back in the 80s! The program is now
obsolete and replaced by the AUFIT program presented below.

W For basic protection analysis | have created a program running on Atari called Panzer
(Protection ANalyZER) that automatically detects and reports many protections. This
program also provides the capability to directly run several FDC commands and analyze
the sectors and tracks information (including timing for track and sector) read.

m KFAnalyze program reads input Stream files generated by the KryoFlux board. A
Stream file contains Atari FD information at the flux reversals level, it is therefore possible
to provide very accurate detections of protections especially those related to bit cell
timing variation. The heart of this program is a precise emulation of the Western Digital
WD1772 Floppy Disk Controller. The emulation mimics a full DPLL data separator and
provides functions equivalent to the read track, read address, and read sector
commands reading data directly from the Stream files. Therefore it is possible to process
the Stream information as if we were read by an Atari WD1772 FDC but with a lot of extra
information especially timing information. This is the ancestor of the Aufit program
presented below.

B My latest program for analyzing Atari floppy disk content is called AUFIT (Atari Universal
FD Image Tool). It provides many features to analyze and display FD content at the flux
transition level (as provided by Kryoflux and Supercard Pro) using a nice Graphical User
Interface. Beyond FD content analysis, the programs also provides the capability to
convert the information in several Atari images formats (Pasti, ST, MSA) for emulation.

I want to thanks to many people on Atari forum for taking time to discuss some of the protections
presented here (See HERE and HERE).

Copyleft ® Jean Louis-Guérin (DrCoolZic) — Rev 1.4 - June 24, 2015 Page 4/ 77

http://www.atari-forum.com/index.php
http://www.atari-forum.com/viewtopic.php?t=9012
http://www.atari-forum.com/viewtopic.php?f=95&t=21952

Atari Floppy Disk Copy Protection

Chapter 2. Copy protections detail description

In this section | provide a detailed description of the different protection’s mechanisms used
in Atari Key disks. The protections have been grouped into two categories:

* Protections based on data

* Protections based on timing

2.1 Protections based on data

This category contains protections based on using non-standard or impossible to write (on
Atari) data content in the tracks and/or sectors of a diskette.

A “normal diskette” has one or two sides (i.e. single or double sided) each having 80 tracks
numbered from 0 to 79. A more detailed description of formats can be found in the Atari Low-
Level Formats section.

A “standard track” on an Atari is composed of 9 sectors each with 512 bytes of data
sequentially numbered from sector 1 until sector 9.

However it is not uncommon to use diskettes with up to 11 sectors and more than 80 tracks
as it allows packing more data. A good duplication/imaging program should be able to detect
and reproduce all these alternatives and therefore they are not really considered as
protection.

But beyond these basic variations of a diskette’s data content we will see that some
protections uses mechanism difficult to detect (so that a copy program would not easily find
them) and some that cannot be reproduced without special hardware.

Copyleft ® Jean Louis-Guérin (DrCoolZic) — Rev 1.4 - June 24, 2015 Page 5/ 77

Atari Floppy Disk Copy Protection

2.1.1 Number of tracks (NOT)

A “normal Atari diskette” has 80 tracks numbered 0 through 79 on each side. Some simplistic
protections are based on extra or missing tracks.

2.1.1.1 Extra tracks (EXT)

EN EENR

Description: A “normal Atari diskette” has 80 tracks numbered 0 through 79 on each
side. It is possible to write up to 82 or even 83 tracks on one side of a diskette. It is also
possible to “hide” one or several tracks on the second side of an “officially” (as specified
in the boot sector) single sided diskette.

Creation: Easy to create on Atari. Note that some early Atari drives are single sided, and
some cannot position the head past track 79. Beware that using tracks over 82 has been
reported to damage some floppy drives.

Detection: You have to probe the diskette using FDC commands to check if some extra
tracks exist (probing 82 tracks is usually sufficient). For Single Sided diskette, you also
need to probe for hidden track on second side.

Duplication: Easy by software.

Emulation: Just need to store information about extra tracks.

Example: Passengers on the Wind (Infogrames) uses tracks 80 & 81.

.1.1.2 Missing tracks (TNF)

Description: A “normal Atari diskette” has 80 tracks numbered 0 through 79 on each
side. It is possible that not all of these tracks are formatted. For detail description of
unformatted track please refer to Unformatted Diskette / Track / Sector. Note that it is
possible to hide data in a track that seems unformatted. Hiding data in what looks like an
unformatted track is usually difficult to detect (for example see Power Drift).

Creation: On a non-preformatted diskette you only need to format the “non-missing”
tracks. On a preformatted diskette (usually diskettes are sold DOS pre-formatted) you
need to mimic unformatted tracks by writing, for example, some random data to those
tracks without sync but the results is really not the same.

Detection: Using WD1772 commands: i.e. a seek command with the verify option should
fail on unformatted track, or a read address should not find any sector.

Duplication: If only the absence of sector is tested then it is easy to reproduce by
software.

Emulation: The preservation file needs to flag missing tracks (e.g. indicating O sector).
Examples: Barbarian (Track 74 — 79 missing), Run the Gauntlet, Kick Off 2

Copyleft ® Jean Louis-Guérin (DrCoolZic) — Rev 1.4 - June 24, 2015 Page 6/ 77

Atari Floppy Disk Copy Protection

2.1.2 Shifted tracks (SFT)

Normally the first sector of a track starts shortly after the index pulse and the last sector of
the track end-up before the next index pulse. On a normal track, the post-index GAP (at
beginning of a track) is about 60 bytes and the pre-index GAP (at the end of a track) is about
600 bytes. In this case the track write splice (location where the floppy drive write gate is
turned on/off) is located at the index.

—n n_
(L

G2

G5

Gl

G2
R A JA A
Y v YT

Y
Sector 1 Sector 2 Sector n

D

G3a

G3b

DATA

Ga

G2

D

G3a

G3b

DATA

Ga

D

G3a

G3b

DATA

G4

G2

D

G3a

G3b

DATA

Ga

G5

Gl

Sector positions relative to the index pulse for a normal track

Several protections shift the position of the track relative to the index. Note that in this case
the track write splice is no more located at the index. The shifted track protections can be
further sub-classified as explained thereafter but usually this is irrelevant for emulation.

This type of protection is challenging for hardware copier. The copy should not be done from index to
index as this will results in a track write splice in middle of a data segment. The copy should start from
the first sector until the last sector using the correct shifted starting position with respect to the index.

2.1.2.1 Data over index (DOI)

B Description: A sector where the Data Field span “over the index”. Normally all sectors of
a track should end up before the index pulse. Yet it is possible to create a track with a
total length that is slightly more than what a normal track can hold. This results in the last
sector “wrapping around” the beginning of the track.

N

(L

G2

G5

G1

G2

D

G3a

G3b

DATA

Ga

G2

D

G3a

G3b

DATA

Ga

D

G3a

G3b

DATA

Ga

G2
AN A }/j\ A J
Y Y N Y
Sector 1 Sector 2 Sector n

D

G3a

G3b

DATA

Ga

G5

G1

Sector positions relative to the index pulse for a track with Data over Index

m Creation:

* On Atari: it is possible to create a “long track” with a total length that is slightly more
than what a normal track can hold (usually about 10 to 20 bytes). This is done by
placing the header of the last sector close to the end of the track. The write-track
command starts at the index pulse and continues until the next index pulse. Therefore
the last sector will be truncated during the format (i.e. write track) operation. However
the write-sector command on this truncated sector will execute normally and this will
result in data being written over and beyond the index pulse.

* On Mastering machine: Normally writing a track is triggered by the index pulse. It is
possible to shift the start of the write operation by some amount (for example time of 20
bytes) and of course to shift by the same amount the stop of the write operation.

B Detection: The last sector spread over the index pulse but it is read as a normal sector
by a read-sector command. It is therefore necessary to use a read-track command to
find out that the last sector actually wrap over the beginning of the track or to somehow
measure the start position (timing) of the last sector.

B Duplication: Once detected the duplication of such sector can be done by formatting
correctly the track.

B Emulation: Requires to store the track and/or sector position in the preservation file.

B Example: Kick Off 2 places almost all the data of one sector at the beginning of a track.

Copyleft ® Jean Louis-Guérin (DrCoolZic) — Rev 1.4 - June 24, 2015 Page 7/ 77

Atari Floppy Disk Copy Protection

2.1.2.2 Data beyond index-pulse (DBI)

Description: This is an extreme variation of the Data over index protection. Normally all
sectors of a track should end up before the index pulse but it is possible to create a track
where the ID Field for the last sector is placed at the very end of the track with the
corresponding Data Field placed at the very beginning of the track. You have to
remember that the Data Address Mark of the Data Field is to be found within 43 bytes
from the last ID Field CRC byte and therefore placement of the ID Field and
corresponding Data Field in the track is needs to be very accurate. The last sector “wraps
around” the beginning of the track. See Computer Hits Volume 2 for an example.

N

(L

G2

Gl | G2 | ID | G3a | G3b [DATA| G4 [G2 | ID | G3a | G3b |DATA| G4 ID | G3a | G3b [DATA| G4 | G2 | ID | G3a | G3b | DATA

AN A }/}\ A J

Y Y N Y
Sector 1 Sector 2 Sector n

Sector positions relative to the index pulse for a track with data field beyond index
Creation: It is almost impossible to position correctly such ID field on an Atari. Therefore
this protection was usually created with mastering machines. The track is shifted so that
the index pulse occur just at the end of the last ID field and of course the corresponding
data field is located at the beginning of the track.
Detection: This type of sector is read normally by the read-sector command. It is
therefore necessary to use a read-track command to find out that the last sector actually
spread over the beginning of the track or to measure the position of the last sector.

»> Note: The DMA can only transmit multiple of 16 bytes from the FDC. Therefore during a read-
track command, one or several of the last bytes (always less than 16) may not be transferred
by the DMA. Consequently it is possible that a read-track do not transfer the 7D Field (or
transfer it partially) when it is placed at the very end of a track. However the FDC read-address
and read-sector commands read the ID field for this sector correctly.

Duplication: It is almost impossible to reliably place an ID field at the very end of the
track on an Atari due to floppy drives rotation speed variation. Therefore this protection
requires specific hardware to be reproduced correctly.

Emulation: Requires to store the track content and/or sector position.

Example: Computer Hits Volume 2 (Beau-Jolly)

2.1.2.3 ID over index (10l)

Description: A sector where the ID Field span “over the index”. This is a variation of the
Data Over the Index-pulse protection. But in that case the index pulse happen inside an
ID field. Please refer to the Data Over Index-pulse protection for more details.

Creation: It is almost impossible to position an ID over the index on an Atari. Therefore
this protection could only be created on mastering machines.

Detection: It is usually not possible to read this ID using a read track command because
the ID segment is at the very end of the track and usually some data read get stuck in the
DMA buffer (see above). Even though this ID can’t be seen using a read track it can be
read normally using read address and read sector commands.

Duplication: It is almost impossible to reliably place an ID field at the very end of the
track on an Atari due to floppy drives rotation speed variation. Therefore this protection
requires specific hardware to reproduce the key disk.

Emulation: Requires to store the track content and/or the sector position.

Example: Colorado, Computer Hits Volume 2 disk 2.

Copyleft ® Jean Louis-Guérin (DrCoolZic) — Rev 1.4 - June 24, 2015 Page 8/ 77

Atari Floppy Disk Copy Protection

2.1.2.4 ID beyond index (IBI)

B Description: This is an extreme variation of the ID over index protection. In this case
only the sync marks that belong to the last ID field are located before the index pulse but
the rest of the ID fields and the corresponding data field wrap around the track’s
beginning.

B Creation: It is impossible to position an ID beyond the index on an Atari. Therefore this
protection could only be created on mastering machines.

B Detection: It is usually not possible to read this ID correctly using a read track command
because the sync of the ID segment are located at the end of the track and therefore not
seen by the read track command. Even though this ID can’t be seen using a read track
it can be read normally using read address and read sector commands.

B Duplication: It is impossible to place an ID field at the very end of the track on an Atari
due to floppy drives rotation speed variation. Therefore this protection requires specific
hardware to reproduce the key disk.

B Emulation: Requires to store the track content and/or sector position.

B Example: Computer Hits Volume 2 second disk.

2.1.3 Track Layout Pattern (TLP)

B Description: With the WD1772 FDC it is possible to slightly modify the layout of a track
by varying the number of characters in the gaps in different position of the track (e.g. vary
the length of the GAP4 placed between the different sectors). It is therefore possible to
create a track with a specific layout pattern different from the standard pattern. This is a
sort of floppy disk water-marking technique.

W Creation: It is quite easy to format a track with specific values for each GAPs by sending
the appropriate information to the FDC during the write-track command.

B Detection: Measure the layout of the different fields of the track using the read-track
command and look for a specific pattern. Note that some tolerance needs to be taken in
account as the number of bytes reported for a specific gap may vary from read to read.

B Duplication: Once detected it is easy to duplicate by software.

B Emulation: Requires storing the track information in the preservation file.

®m Example: Does not seems to be used on Atari?

2.1.4 Number of Sectors (NOS)

B Description: The standard Atari FD format uses tracks with 9 sectors of 512 data bytes.
However many games use 10 or even 11 sectors per track just to pack more data on the
diskette. However alone number different from 9 should not be considered as a
protection. The following values are often used:

* Tracks with less than 9 sectors often use sectors with 1024 data bytes.

* Tracks with 11 sectors push several of the parameters that can be handled by the
WD1772 FDC close to their limits. This is especially true considering that the IBM
Floppy Drive standard allows a 3% rotation’s speed variation. These tracks are
therefore often referred as “read only” because once written they can’t be modified.
This is due to very low number of bytes used in the GAP fields that does not allow for
the write sector command to work correctly.

* Tracks with 12 or more sectors (e.g. 70!) clearly indicate that some “tricks” have been
used as 12 real sectors won't fit on a track.

B Creation: Up to 11 is possible in software, but remember that with 11 sectors it is almost
impossible to write data consistently without using special hardware.

B Detection: Easy with multiple read-address command.

B Duplication: Easy in software for a number of sectors per track up to 10. Duplicating
track with 11 sectors is possible but more challenging.

B Emulation: Requires nothing special the preservation file just needs to store the data
information for all the sectors of the track using read-sector commands.

B Examples: Computer Hits Volume 2: 11 sectors / track, Theme Park Mystery: 12 sectors
[track, Sherman M4: 70 sectors / track.

Copyleft ® Jean Louis-Guérin (DrCoolZic) — Rev 1.4 - June 24, 2015 Page 9/ 77

Atari Floppy Disk Copy Protection

2.1.5 Sector Sizes (SSZ)

B Description: Normally the tracks have sectors with 512 bytes long Data Field. But it is
possible to create a track with different data field size (usually a mixture of 512 and
1024). This is a more reliable approach to increase the overall capacity of a track rather
than using 11 sectors of 512 bytes. Non-standard sector size are not be considered as a
protection. Two common examples of format with different sector size are:

* 9 sectors of 512 bytes plus 1 sector with 1024 bytes, and

* 5 sectors of 1024 bytes plus 1 sector with 512 bytes.

Creation: Easy on Atari.

Detection: Easy with multiple read-address command.

Duplication: Easy on Atari.

Emulation: Requires nothing special the preservation file just needs to store the data
information for all the sectors of the track using read-sector commands.

B Examples: Kick Off 2, Turrican uses tracks with a mixture of 1024 and 512 bytes sectors.

2.1.6 Invalid ID Field (IIF)

An ID Field contains the following information after the ID Address Mark: the Track Number,
the Side/Head Number, the Sector Number, the Sector Length, and two CRC bytes.

To understand these protections you need to know that during a read-sector command
when an ID Field is located on the disk, the WD1772 compares the Track Number of the ID
Field to its internal Track Register. If there is no a match, the next ID Field is read and a
comparison is made again. If there is a match, the Sector Number of the ID Field is
compared with its internal Sector Register. If there is no Sector match, the next encountered
ID Field is read off the disk and a comparison is made again. If both matches and if the ID
Field CRC is correct, the sector is located and an internal register is loaded with the Sector
Length. Invalid ID field can further be decomposed:

2.1.6.1 Non-standard IDAM (NSI)

W Description: The normal IDAM (ID Address Mark) used by the WD1772 is the character
$FE which is sent after a sequence of 3 $A1 sync marks. An undocumented feature of
the WD1772 is that it accepts any character in the range $FC-$FF as an IDAM?,

m Creation: During a write-track command it is possible to use any value in the range
$FC-$FF instead of the normal $FE IDAM character.

B Detection: As the read-address command and the read-sector command execute

normally it is easy to hide the fact that a non-standard IDAM has been used. Detection

can be done using a read-address command.

Duplication: Once detected this protection is easy to duplicate.

Emulation: Requires to store the track information as well as the address information.

Example: Z-out

1 Note that several of the BIOS calls will not work for sectors with size different than 512.

2 Note that, in MFM, for the marks characters between $F8 and $FF the least significant bit is
always ignored by the WD1772 and therefore : $F8 = $F9, ..., $FE = $FF

Copyleft ® Jean Louis-Guérin (DrCoolZic) — Rev 1.4 - June 24, 2015 Page 10/ 77

Atari Floppy Disk Copy Protection

2.1.6.2 Invalid track number (ITN)

B Description: A sector with an ID Fields that contains a track number different from the
actual track number (in FDC register). In order for the type | commands (e.g. seek) to
succeed, on such a track, the verify bit has to be reset. Otherwise the FDC check that at
least one sector has the correct track number. The read-sector command using
“standard” parameters will also fail.

B Creation: Use write-track command with incorrect track number in ID Field.

B Detection: The read-sector command compares the track number of the ID Field with

the track register if this matches it then compares the sector number of the ID Field with

the sector register. If any compare operation fails the FDC retry 5 times then terminate
the command with a record not found (RNF) error. Reading this kind of sector is possible
but requires playing with the FDC registers (i.e. loading the track register with invalid
value).

Duplication: Easy by software

Emulation: The preservation file should store the exact ID block.

Example: Star Glider 2, Dragonflight

.1.6.3 Invalid head number (IHN)

Description: An ID field with an invalid Side/Head Number (i.e. not equal to O or 1).
Normally this field is supposed to be equal to the side you are reading however it should
be noted that the WD1772 does not use this information so any value can be used.
Creation: It is possible to write invalid values for the Side Number of an ID Field by
sending the appropriate data to the FDC during a write-track command.

Detection: Use a read-address command and compare the side value.

Duplication: Can easily be done by software

Emulation: The exact content of the ID field need to be saved in the preservation file.
Example: Star Glider 2, Dragonflight

.1.6.4 Invalid sector number (ISN)
Description: During the format command the character loaded into the data register of
the WD1772 is written to the disk. However the characters $F5 and $F6 are used to write
respectively the Sync Characters $A1 and $C2 with a missing clock transition and the
character $F7 is used to generate two CRC bytes. This implies that it is not possible to
create a sector with an ID ranging from 245 through 247 ($F5-$F7). In fact the WD1772
documentation indicates that the sector number should be kept in the range 1 to 240.
B Creation: Itis not possible to create a sector with an ID in the range of 245-247 with the
WD1772 FDC and therefore creating such ID Field requires specific hardware.
W Detection: Can easily be done with a read-address command.
B Duplication: Requires special hardware.
B Emulation: The sector with an invalid ID number is read as a normal sector by a read-
sector command and stored in the preservation file like any other standard sector.
B Example: Dungeon Master (FTL Inc.) use a sector number of 247 ($F7) on track O

EN EEN

EN EEER

It is actually possible to write a byte between $F5-$F7 inside an ID field using the escaping capability
of the WD1772 see WD1772 MFM track language.

Copyleft ® Jean Louis-Guérin (DrCoolZic) — Rev 1.4 - June 24, 2015 Page 11/ 77

Atari Floppy Disk Copy Protection

2.1.6.5 Invalid sector length (ISL)

EN EEER

Description: An ID field with an invalid Sector Length (i.e. not in range 0-3). Normally
this field is supposed to take the value 0, 1, 2, 3 corresponding to respectively 128, 256,
512, 1024 data bytes size. As the WD1772 only uses the last three bits of the sector
length information it is possible to write sector length value larger than 3. For example
0x03 and OxFF are equivalent.

Creation: It is possible to write invalid values for the Sector Length of an ID Field by
sending the appropriate data to the FDC during a write-track command.

Detection: Use a read-address command to get all the fields.

Duplication: Can easily be done by software.

Emulation: The exact content of the ID field need to be saved in the preservation file.
Example: Star Glider 2 Z-Ouit.

.1.6.6 ID CRC Error (ICE)

Description: A sector that has a CRC error in the ID Field. This results in a sector that
cannot be read by the read-sector command.

Creation: Easy with the write-track command. For example by sending 2 normal bytes
(e.g. $00, $00) at the end of the field instead of one "Write CRC" character ($F7).
Detection: It is possible to read this kind of sector ID field with a read-address command
and to verify that it has a wrong CRC. But it is not possible to read the sector with a read-
sector command.

Duplication: Can easily be done by software

Emulation: Requires to store the complete track and address information in the
preservation file.

Example: xxx

2.1.7 Duplicate Sector Number (DSN)

Description: A track where, two (or more) sectors use the same sector’'s number. Using
blindly a read-sector command, for this duplicated sectors, result in reading randomly
one of the two sectors based on current head position. In order to read a specific one, it
is necessary to issue a read-sector command delayed by a specific amount of time from
the index pulse. Usually, to facilitate the detection, these two sectors are placed well
apart (e.g. at the beginning and the end of the track). Sometimes the second ID field is
not followed by a corresponding data field (no sector block protections).

Creation: Easy in software.

Detection: Easy by using read-address and/or read-track commands.

Duplication: Easy in software.

Emulation: The information for all sectors including the duplicate sector needs to be
saved. In is also necessary to store the position of the sector in the track.

Example: Night Shift uses a duplicated sector numbered 66 (the duplicated sectors also
use the no data block protections).

Copyleft ® Jean Louis-Guérin (DrCoolZic) — Rev 1.4 - June 24, 2015 Page 12/ 77

Atari Floppy Disk Copy Protection

2.1.8 Sector within sector (SWS)

Description: During formatting it is possible to place a new sector that overlap with a
previous one. Therefore when reading these sectors we have the impression that the
second sector is located within the first one. The layout of a first sector contains the
fields: GAP2-ID Field-GAP3-Data Field-GAP4. The included sector has its own GAP2-ID
Field-GAP3-Data Field placed inside the Data Field of the including sector. This is
possible because during a read-sector command the sync mark detector of the WD1772
is turned off and therefore the included field are treated as normal data (sync sequence
not recognized). A detailed explanation of this protection can be found in the Theme Park
Mystery example. An even more complex variant is to have a sector within another sector
which is itself located within another sector (SWSWS). Even with such a complex layout it
is possible to read correctly an “included sector’ For an example of SWS-WS-WS look at
Computer Hits Volume 2. It is also possible to shift by one bit-cell the included sector in
respect to the including sector. This trick allows to read data bits as well as clock bits of
the overlapped data field as in Turrican to check presence of NFA.

Creation: Only possible in specific cases on Atari and therefore usually requires usage of
specific hardware.

Detection: The read-address command allows to read the ID fields of the including and
included sectors. The read-sector command reads the including sector beyond the start
of the included sector because during a read-sector command the sync mark detector of
the WD1772 is turned off. The included sector is read normally as if no including sector
was placed before. Usually look for this protection when a track has a number of sector
equal or exceeding 12. To confirm this protection you can use a read-track command.
Another alternative is to check the data inside the including sector’s Data Field and look
for GAP2 followed by an ID Field etc. However beware that this will not always work due
to the way the FDC works. For example it is not possible to find the ID and DATA field of
sector 16 inside sector 0 of track 2 of Computer Hits Volume 2 because it is shifted.
Duplication: Require special hardware. Often combined with other protections like NFA.
Emulation: Once the protection is detected the preservation program should store the
track layout and the information about the including and following sectors.

Example: Theme Park Mystery, Computer Hits Volume 2, Turrican, Nitro Boost
Challenge

2.1.9 Non Standard DAM (NSD)

Description: The normal DAM (DATA Address Mark) used by the WD1772 is either the
character $FB for normal data and $F8 for deleted data which is sent after a sync
sequence of 3 $A1 sync marks. An undocumented feature of the WD1772 is to accept
the any character $F8-$FB as a DAM (see also Non Standard IDAM).

Creation: During a write-track command it is possible to use $FC or $F9 instead of the
normal $FB or $F8 DAM character.

Detection: As the read sector command execute normally it is easy to hide the fact that
a non-standard DAM has been used. Detection can be done through a read track
command where you have to look for a $FC/F9 character instead of $FB/F8 in the header
of the DATA field. Note that when an alternate DAM is used, the DATA Field still reads
without a CRC error.

Duplication: Once detected this protection is easy to duplicate.

Emulation: Requires storing the complete track in the preservation file.

Example: No example found

Copyleft ® Jean Louis-Guérin (DrCoolZic) — Rev 1.4 - June 24, 2015 Page 13/ 77

Atari Floppy Disk Copy Protection

2.1.10 Sector with No ID (SNI)

Description: A sector with a Data Field but not preceded by an ID Field.

Creation: on Atari it is quite easy to format a sector of a track with a DATA field not
preceded by an ID Field using a write-track command.

Detection: There is no way to read this kind of sector with a read sector command.
Therefore the only way to detect the presence of such data field is by using a read track
command. Therefore this kind of sector it is very rarely used.

Duplication: Can easily be done by software.

Emulation: Requires storing the track information in the preservation file.

Example: Gunship (D1 from Air Supremacy Compilation), Vroom after sector 106 has a
fuzzy SNI (see Fuzzy Track (FZT))

2.1.11 Sector with No Data (SND)

EE NN EBEEBE

Description: A sector with an ID Field but not followed by a Data Field.

Creation: on Atari it is quite easy to format a sector of a track with an ID field not followed
by a Data Field using a write-track command.

Detection: This kind of sector is found using a read-address command, but is not found
using a read-sector command. This is because during the read-sector command the
FDC expects to find a DAM/DDAM within 43 bytes from last ID Field CRC byte, if not the
sector data is searched again for 5 revolutions and the command is terminated with the
Record Not Found (RNF) Status bit set.

Duplication: Can easily be done by software.

Emulation: Requires storing the track information in the preservation file.

Example: Night Shift uses duplicate sectors 66 both of them having No Data fields

.1.12 Data CRC Error (DCE)

Description: A sector that has a CRC error in its Data Field.

Creation: Easy during write-track command by using the same mechanism as
described in Invalid ID CRC.

Detection: Can easily be done using a read-sector command. The data sector is read
normally but the CRC error status bit is set at the end of the command.

Duplication: Can sometimes be done in software.

Emulation: The content of the sector should be stored as normal but the CRC error
indicator must be added to the preservation file.

Example: Populous

Copyleft ® Jean Louis-Guérin (DrCoolZic) — Rev 1.4 - June 24, 2015 Page 14/ 77

Atari Floppy Disk Copy Protection

2.1.13 Data Track (DTT)

B Description: This kind of track does not contains the Atari standard ID / Data / Gap
fields. The track is usually composed of a special Header field followed by a Single Data
field. In order to be read correctly the Header needs to be preceded by 3 $A1 sync
marks. The only way to read the Single data field is to use a Read Track command.
Remember that during a Read Track command the sync detector of the WD1772 is
active at all time and therefore any MFM sequence of bits that contains 0x000101001 will
cause the FDC to resynchronize and consequently the data are not read correctly after
that. To avoid a resynchronization an escape character (often 0x07 or OXOF) is inserted
whenever the input data contains this sequence. When the track is read the escape
characters are removed to get back the original data.

B Creation: As the Data record can contains “invalid code” (i.e. code like 0xF5-0xF7) it
can’t be written using a Write Track command. It is therefore mandatory to use special
hardware to write this kind of track.

B Detection: A Read Track command is used. The software looks for at least three OxAl
then decode the rest of the Header and then read the data record according to parameter
passed in the header. A checksum is often added to the data field and can be used to
verify that the data record has been read correctly.

B Duplication: Not possible in software requires special hardware.

B Emulation: For emulation it is necessary to save the complete content of the track as
read by the Read Track command.

B Example: Maupiti Island (escape character 0x07), Golden Axe, Hot Rod, International
Soccer (escape character 0x0F), Albedo

It is even possible to split the track into several "pseudo-sectors”. For example in Albedo the track is
split into 5 pseudo-sectors

2.1.14 Hidden Data into GAP (HDG)

W Description: It is possible to write hidden data into any gap. However hidden data are
usually placed in the post DATA Gap (Gap of 40 bytes) as well as in the pre and post
index GAP (respectively 664 and 60 bytes on standard diskettes). See “copy me | want to
travel” from Claus Brod for a complete explanation and some interesting examples. There
are some known sequence described in Hidden data using spurious sync sequence.

B Creation: Extra data can be written into Gap only during the write-track command. It is
recommended to use Sync Marks in front of the data to be able to read them correctly.

B Detection: You need to use a read-track command to be able to read the inter-sector
information. But it hard to find this information if you do not know what and where to look
for. Therefore some heuristic need to be used (e.g. presence of sync marks into GAP).

® Duplication: Although it is difficult to detect, it is easy to reproduce with the write-track
command.

B Emulation: Requires storing the track information in the preservation file.

B Example: Jupiter Masterdrive, Dragonflight, Union Demo

2.1.15 Hidden data into nonstandard tracks (HDT)

Description: It is possible to hide data into a nonstandard track.
Creation: Only possible on an Atari if no invalid bytes are used.
Detection: Use the read track command.

Duplication: Not possible if invalid bytes used.

Emulation: Requires storing the track information in the preservation file.
Example: Realm of the Troll track 79.0

Copyleft ® Jean Louis-Guérin (DrCoolZic) — Rev 1.4 - June 24, 2015 Page 15/ 77

http://info-coach.fr/atari/hardware/_fd-hard/cb-copy-me.pdf
http://info-coach.fr/atari/hardware/_fd-hard/cb-copy-me.pdf
http://www.clausbrod.de/cgi-bin/view.pl/Atari

Atari Floppy Disk Copy Protection

2.1.16 Invalid Data in Gap (IDG)

E NN EEER

ENN EEE

Description: During the format command character loaded into the data register of the
WD1772 is written to the disk. However the characters $F5 and $F6 are used to write the
Sync Marks and the character $F7 is used to generate of two CRC bytes. This implies
that it is not possible to have a character ranging from 245 through 247 ($F5-$F7) inside
any of the GAPs®. Reading these characters into GAPs requires using a read-track
command. In order for these invalid characters to be read correctly with a read-track
command they are usually preceded by one or several sync character. Be aware that the
byte $F7 can be used to escape special character (see WD1772 MFM track format
language).

Creation: It is not possible with the WD1772 to write a character within the range 245-
247 into any GAP. Therefore writing invalid character into GAPSs requires mastering
machines.

Detection: Can easily be done with a read-track command.

Duplication: Require special hardware.

Emulation: It is necessary to save the complete content of the track.

Example: Operation Neptune & Bob Morane uses OxF7 as gap bytes

.1.17 Invalid Sync-mark Sequence (ISS)

Description: A normal Sync mark sequence is composed of 3 Sync Marks (3 x $Alor

3 x $C2) followed by an Address Mark (IAM = $FC, IDAM = $FE, DAM = $FB, or DDAM
= $F8). Any other sync sequence is considered as invalid. Note that an invalid sequence
is usually used to sync up the data separator in order to read data into gap or for the Data
track protection. But it is also abnormal to have less than 2 or more than 3 Sync Marks in
sequence. See also Invalid Sync sequence.

Creation: It is quite easy to create an invalid sync mark sequence during format by
sending appropriate information to the FDC using the write-track command.

Detection: Only possible with the read-track command as the read-sector command
just ignore invalid sync mark sequences.

Emulation: Requires storing the track information in the preservation file.

Duplication: Easy by software.

Example: Barbarian (one Sync alone on Track 0, series of Sync on Track 48 & 62)

.1.18 Partially formatted track (PUT)

Description: Inside what looks like an D
unformatted track it is possible to hide a o
sector.

Creation: This kind of track can only be
created using special hardware.

Detection: The program verify that it can
only reads the known sector and that no
other sector exist.

Emulation: Requires to store the content of
the read track command in the preservation
file. !]
Duplication: Requires special hardware. e ot o] e)]
Example: Eco tracks 77 & 79

3 Note that it is not possible to modify the GAP2 or GAP3b ($00). Therefore writing hidden
bytes must be done in GAP1 and/or GAP3a and/or GAP4

Copyleft ®© Jean Louis-Guérin (DrCoolZic) — Rev 1.4 - June 24, 2015 Page 16/ 77

Atari Floppy Disk Copy Protection

2.1.19 Fuzzy Sector (FZS)

2.1.20 Fuzzy Track (FZT)

this sector several times returns different data.
Creation: Cannot be created on Atari, requires mastering

Description: A sector that contains fuzzy bits. Reading

machines. Please refer to the fuzzy bits section. count =0
Detection: The flowchart on the right describes a copy Read copy
recognition routine that tests for fuzzy bytes in the data protected sector
field (patent 4,849,836). The protected sector that contains —by
fuzzy bytes is read several times and randomness of the | Store read data |
returned data is checked. If the same data is read several v
times on the protected sector the program is not executed. [countr |
Very often, as in Dungeon Master, the protection is verified +
several times during execution of the game/program.

. . e . . Read copy
Duplication: Difficult and requires special hardware. protected sector

Emulation: The preservation file should have an indicator
to record the fact that a sector has Fuzzy bytes. Usually
the first and last 32 bytes of a fuzzy sector do not contain
fuzzy bytes. It is also good to store information about bits

ﬂ YES
. . . NO,
that have changed in the different read operations.
Example: TODO <ame daia
YES
NO

Description: This is somewhat similar to Fuzzy Sector: the
protected track that contains fuzzy bits is read several
times and randomness of the returned data is checked.

This is usually done in specific areas as explained below.
Creation: Cannot be created on Atari, requires special

hardware. Please refer to the fuzzy bits section.

Detection: If you know the location of the fuzzy bytes, it is easy to read the same data
several times and to check that returned data are different. However detecting fuzziness
in a read track without specific information is difficult because there are many reason why
a read track returns random data in several places. For example the beginning of a track
reads differently until the first sync because the position where the read track starts vary.
Duplication: Difficult and requires special hardware.

Emulation: The preservation file should have an indicator to record the fact that a track
has a Fuzzy data track. Note that Pasti STX does not support this kind of protection.
Examples: Power Drift (track 1 side A of floppy disk 2). Vroom.

Execute Program

Copyleft ® Jean Louis-Guérin (DrCoolZic) — Rev 1.4 - June 24, 2015 Page 17/ 77

Atari Floppy Disk Copy Protection

2.2 Protections based on timing

This section describes the protections based on variations of the standard 4 ps cell bit-rate.
Although different techniques are used, the result of using bit-rate variation is always the
same (with the exception of NFA): the overall time-length of a byte read from the drive, is
different from a “normal 32 ps byte”. Therefore detection of this protection requires to be able
to measure timing information when reading the block of bytes that compose a sector.

2.2.1 Long / Short Sector (LGS & SHS)

B Description: This kind of sector can be created by writing a sector of a track with an
apparent rotation speed of the drive slightly above or below the normal speed. In practice
this is obviously not done by varying the rotation speed of the drive but by changing the
bit-cell clock. This results in a reading time for this sector above or below the reading time
of a “normal sector”. The IBM standard specifies that the FDC circuitry should handle a
variation of the drive’s rotation speed within + 2% range. Therefore the DPLL of a FDC is
supposed to accept at least a 4% variation. But in practice the WD1772 DPLL (See
WD1772 DPLL Input Circuitry) can handle at least 10% variation for MFM encoding (as
described in this DPLL Patent). It is therefore possible to write sectors with bit cells at
frequencies between 225 and 275 KHz (corresponding respectively to 3.6 to 4.4 us bit
width) and to still be guaranteed to read the data correctly. However the resulting sector
will be longer or shorter than a normal sector. The most famous usage of this protection
was done by Rob Northen in the Copylock (RNC) protection mechanism* (see an
interview with Rob Northen): in this case the bit width is changed to approximately 4.2us
(about 4 to 5% variation) to result in a shorter sector. The beginning of the sector (for
about 32 bytes) is written at normal speed so that we are sure that the data in this section
are always read correctly.

B Creation: Cannot be done on an Atari. It requires mastering machines with the capability
to vary the bit cell width on the fly.

W Detection: can’t be done with standard TOS call. It requires to use specific routines to

measure the time it takes to read the bytes in the short/long sector.

Duplication: Difficult and requires special hardware.

Emulation: The preservation file should store timing information about the sector.

Example: Populous - Track 0O Sector 6, Back to the Future (TO-S6)

4 According to vauvillf: there has been 2 RNC. The old one used for example on Arkanoid2,
and Thundercats... It was possible to copy RNC-1 with the acopy program (only 2 to 3
times). Then there was a big evolution of the RNC protection sometime in 1988: with this one
it was no more possible to copy the protection by software, and it was also using the famous
trace decoding loop. Apparently the description provided here refers to the RNC-2 protection.

Copyleft ® Jean Louis-Guérin (DrCoolZic) — Rev 1.4 - June 24, 2015 Page 18/ 77

http://www.codetapper.com/amiga/interviews/rob-northen/
http://www.codetapper.com/amiga/interviews/rob-northen/

Atari Floppy Disk Copy Protection

2.2.2 Long/Short Track (LGT & SHT)

Description: This kind of track can be created by writing all bytes of a track with an
apparent rotation speed of the drive slightly above or below the normal speed. This
results in a track that contains more or less bytes than a normal 6240 bytes track. In
practice this is obviously not done by varying the rotation speed of the drive but by
changing the bit-cell width. The IBM standard specifies that the FDC circuitry should
handle a variation of the drive’s rotation speed within £ 2% range. Therefore the DPLL of
a FDC is supposed to accept at least a 4% variation. But in practice the WD1772 DPLL
(See WD1772 DPLL Input Circuitry) can handle a 10% variation for MFM encoding (as
described in the DPLL Patent). It is therefore possible to write sectors with bit cells at
frequencies between 225 and 275 KHz (corresponding respectively to 3.6 to 4.4 ps bit
width) and to still read the data correctly.

Creation: It requires special mastering machines that can vary the bit cell width on the
fly.

Detection: You can use a read track command. The normal track length is around 6240
bytes and it is sufficient to checks that the track has more (or less) than a 5% above the
nominal value (e.g. less 6027 in Arkanoid).

Duplication: Difficult and requires special hardware.

Emulation: The preservation file should store timing information about the track as well
as the number of bytes of the track.

Example: Arkanoid , Indiana jones last crusade, Guntlet I, Garfield, speedball
Awesome (T79 < 6000 bytes)

2.2.3 Sector Bit-rate Variation (SBV)

Description: This is a more difficult to detect bit-rate variation. A sector is divided into
several segments. Each of them uses a “drive rotation speed” slightly above or below the
normal speed. By using faster and slower segments in the same sector it is possible to
have the timing of these segments to compensate resulting in a sector with a normal
overall timing. For example the Macrodos protection from Speedlock Associates divides
a sector into 4 segments with normal-faster-slower-normal rotation speed resulting in an
overall standard time length.

Creation: Requires special hardware that have capability to vary the bit width.
Detection: It is quite difficult to detect this protection because the overall sector length is
the “normal” length. It is therefore necessary to measure the timing of blocks of
characters (usually multiple of 16 using DMA transfer) that compose a sector and to
compare them to standard block length to check for specific above or below patterns.
Duplication: Require specific hardware

Emulation: The preservation file should store detail timing information about the sector.
On Atari it is only possible to store timing information about reading a 16 bytes block.
Example: Golden Axe, Colorado, Starblade, Treasure Trap, Damocles

Copyleft ® Jean Louis-Guérin (DrCoolZic) — Rev 1.4 - June 24, 2015 Page 19/ 77

Atari Floppy Disk Copy Protection

2.2.4 No Flux Area (NFA)

B Description: A track that contains a very long area without reading flux transitions.
Note that this is quite different from an unformatted area (no flux transitions recorded)
because reading an unformatted area return many random flux transitions due to the fact
that the gain of the amplifier (ACG) on the read channel is pushed to its maximum
resulting on picking up noise on the head. In order to produce such area some tricks
needs to be used as explained in the No Flux Area on Disk section. This is difficult to
produce even with specialized hardware.

B Creation: Requires specific hardware.

B Detection: No Flux Area result in reading 0x0000 MFM word in the FDC shift register (no
clock transition and no data transition). However the WD1772 FDC only allow to read the
data bytes of the MFM word but not the clock bytes. It is therefore not possible to directly
check that the clock bytes in an NFA are also null. This is why the NFA protection places
the no flux area in a sector within another sector, where the included sector is shifted by
a half-cell. The including sector allows to read the “data part” of the NFA and the included
sector allows to read the “clock part” of the NFA. For more information refer to Checking
NFA with the WD1772 section.

B Duplication: Difficult and requires special hardware.

B Emulation: The preservation file need to save the track data and also needs to save the
two sectors that allow to read the data and the clock.

B Example: Turrican.

Here is an example of a NO Flux Area that is located over the index. As indicated the NFA is
4.27ms long, starts before the end of the track, and wrap around the index.

i AUFIT Analyzer Prototype -
] Directory | File | M:\Atari\KRYOFLUX\Stream Images\Turrican Limit Flux. Disp.Read [] Slow []

Histogram | Information | Sector

6000 Logarithmic Scale []
OO0 4000
| A
0 . A - . 1 L i 1 . D . .
2 25 3 35 4 45 5 55 6 6,5 7 75 8 85 9 9,5 10
Track 08.0 Rev 1 - Flux range: 2,66 4266,83 ps - Track length: 199,861 ms - Debug z=1,0 s=4 p=9821 [Rev [-T1 [+]

AN czH

8r R e I e D I B e LT B R B I e e e e e]

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Copyleft @ Jean Louis-Guérin (DrCoolZic) — Rev 1.4 - June 24, 2015 Page 20/ 77

Atari Floppy Disk Copy Protection

Chapter 3. Preservation of Atari floppy disks

Information presented in this document about protection mechanisms can help in the
design of techniques/programs for duplication or preservation of original Atari diskettes
with the following philosophy:

» A preservation technique should always do the most to ensure the integrity of the preserved
data. The preserved data should operate just like the original and not remove any protection, or
modify the program being preserved in any way. The preservation technique must do the up
most to check that the preserved data is identical to the original.

Specially designed programs can duplicate key disks for many of the “simple” protections
presented here. But duplication of key disks using more advanced protections requires using
specially designed hardware like the vintage Discovery Cartridge or the recently released
KryoFlux and SuperCard Pro devices. Analog hardware copiers, like the Blitz cable and
associated software, can sometime create a working copy of a protected diskette but they do
not fulfill the above requirements of producing a copy identical to the original.

Preservation has different meanings for different people but it can be classified into two

categories:

B A “real preservation” is intended to save all the required information from a floppy disk so
that it is not only possible to emulate the original FD but it is also possible to physically
duplicate the original FD. For example the files produced by the Discovery Cartridge,
the KryoFlux, and the SuperCard Pro devices allow to emulate or to backup protected
disks.

B An “emulation preservation” is intended to save enough information from a floppy disk so
that it is possible to emulate the behavior of the original FD in a software or hardware
emulator. For example the files produced by the Pasti imager allow to emulate protected
disks. However it is not possible to recreate a FD from Pasti files.

It is interesting to note than most emulation / duplication programs do not care about (and
sometimes can’t detect) the detailed underlying protection mechanisms used. They just store
enough information to replicate the effect of a specific protection. For example they detect
fuzzy bytes but they do not care if they result from bits in Ambiguous areas, or from bits rate
violation.

In the following sections we are going to explain how to correctly use several devices
specially designed to preserve Atari floppy disks.

3.1 Cleaning a floppy disk to create correct image

Here are some basic rules to follow to create the best possible image:

B Use a known good original: Always use original disk that has not been modified.

B Write protect your original: In order to keep an unmodified disk always make sure that the
original have the protect notch in the correct position at all time you use the disk including
during the imaging operation.

B Clean your original: Atari floppy disks games are getting very old. They are prone to be
dirty even if not used too much because of the environment. This results in deteriorated
magnetic signal picked up by the read head. Carefully clean your disks with rubbing
alcohol and cotton swabs. Rotate the disk in its jacket, cleaning the surface until no more
residue is found on a clean cotton swab.

B Clean your floppy drive head: After reading several disks the head will have accumulated
a lot debris. Clean the drive’s head with a commercial head cleaner or by using the same
rubbing alcohol and cotton swab technique used to clean your disks.

3.2 Why do we need several revolutions for preservation?

You might be tempted to sample flux transition for only one revolution in order to save space
on hard disk. However for preservation this won’t work for the following reasons:

Copyleft ® Jean Louis-Guérin (DrCoolZic) — Rev 1.4 - June 24, 2015 Page 21/ 77

Atari Floppy Disk Copy Protection

B For duplication you can usually sample the flux transitions of only one revolution. You
should get a perfect backup of the original floppy if
X your original is in perfect condition,
* you have set all parameters of you iamging device correctly, and
* If the floppy you use for the backup is also in perfect condition.

B For preservation you must sample the flux transitions of at least three revolutions. But
it is recommended to sample five revolutions in order to be able to verify the integrity of
the sampled data as explained below.

The rational for using five revolution is the following:

* By definitions fuzzy bytes are detected by reading several times the same bytes and
comparing if the values are different. Therefore this kind of protection implies to sample
at least two revolutions but three or more is preferred (majority rule).

* Many Atari games uses protections based on shifted tracks. In such a case the region
“‘under” the index belongs to an ID or a DATA field and therefore it is not possible to
start reading or writing data at the position of the index (this must be done at the
location of the track write splice). Therefore this kind of protection implies to sample at
least two revolutions. The combination of the last two requirements result in the
necessity to sample at le