

Atari Floppy Disk
Copy Protection

By Jean Louis-Guérin (DrCoolZic)
Revision 1.4 ï June 24, 2015

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 2 / 77

Table of Contents
Table of Contents .. 2

Chapter 1. Presentation ... 4

Chapter 2. Copy protections detail description ... 5
2.1 Protections based on data .. 5
2.1.1 Number of tracks (NOT) ... 6
2.1.2 Shifted tracks (SFT) ... 7
2.1.3 Track Layout Pattern (TLP) .. 9
2.1.4 Number of Sectors (NOS) .. 9
2.1.5 Sector Sizes (SSZ) ... 10
2.1.6 Invalid ID Field (IIF) .. 10
2.1.7 Duplicate Sector Number (DSN) .. 12
2.1.8 Sector within sector (SWS) .. 13
2.1.9 Non Standard DAM (NSD) ... 13
2.1.10 Sector with No ID (SNI) .. 14
2.1.11 Sector with No Data (SND) .. 14
2.1.12 Data CRC Error (DCE) ... 14
2.1.13 Data Track (DTT) ... 15
2.1.14 Hidden Data into GAP (HDG) .. 15
2.1.15 Hidden data into nonstandard tracks (HDT) .. 15
2.1.16 Invalid Data in Gap (IDG) ... 16
2.1.17 Invalid Sync-mark Sequence (ISS) .. 16
2.1.18 Partially formatted track (PUT) ... 16
2.1.19 Fuzzy Sector (FZS) .. 17
2.1.20 Fuzzy Track (FZT) .. 17
2.2 Protections based on timing ... 18
2.2.1 Long / Short Sector (LGS & SHS) .. 18
2.2.2 Long/Short Track (LGT & SHT) ... 19
2.2.3 Sector Bit-rate Variation (SBV) .. 19
2.2.4 No Flux Area (NFA) .. 20

Chapter 3. Preservation of Atari floppy disks ...21
3.1 Cleaning a floppy disk to create correct image .. 21
3.2 Why do we need several revolutions for preservation? .. 21
3.3 Kryoflux short presentation .. 23
3.4 Supercard Pro short presentation .. 23

Chapter 4. Technical Information ...24
4.1 Atari Low-Level Formats ... 24
4.1.1 Format for 9/10/11 Sectors of 512 Bytes ... 25
4.1.2 ñStandardò 128-256-512-1024 Bytes / Sector Format ... 26
4.2 WD1772 DPLL Input Circuitry ... 27
4.2.1 Description ... 27
4.2.2 WD1772 Detection of Fuzzy Border Bits ... 29
4.3 WD1772 MFM track language ... 30
4.4 WD1772 Synchronization (sync marks detection) .. 31
4.5 False sync mark detection .. 32
4.6 Overlapping Sync Mark ... 32
4.6.1 Overlapping $4489-$4489 ($A1-$A1) .. 32
4.6.2 Overlapping $5224-$4489 ($C2-$A1) .. 33
4.6.3 Overlapping $4489-$5224 ($A1-$C2) .. 33
4.6.4 Overlapping $5224-$5224 ($C2-$C2) .. 33
4.6.5 Invalid Sync sequence ... 33
4.7 WD1772 Bug in Read/Write Track commands .. 34
4.8 WD1772 CRC Information.. 35
4.8.1 CRC Computation .. 35
4.8.2 Playing with the CRC ... 35
4.9 No Flux Area on Disk ... 37
4.9.1 Checking NFA with the WD1772 ... 37

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 3 / 77

4.9.2 Special case of No Flux Area over index ... 38
4.10 Unformatted Diskette / Track / Sector .. 41
4.10.1 Presentation ... 41
4.10.2 Partially unformatted track ... 42
4.10.3 Partially formatted Track .. 44
4.10.4 Unformatted track detection ... 44
4.10.5 How to reproduce unformatted areas on Floppy Disks? .. 44
4.11 Fuzzy Bits ... 46
4.11.1 Flux Reversals in Ambiguous Area .. 46
4.11.2 MFM Flux Timing Violation... 46
4.11.3 Weak Bit ... 47
4.12 Write Splices ... 48
4.12.1 Sector write splices .. 48
4.12.2 Track write splices .. 49
4.13 Hidden data ... 50
4.13.1 Union Demo / Dragon Flight hidden sequence .. 50
4.13.2 Jupiter Masterdrive hidden sequence .. 50
4.13.3 Realm of the Troll ... 51

Chapter 5. Analysis of Games/Programs ...52
5.1 Barbarian (from Psygnosis) .. 53
5.2 Bob Morane .. 54
5.3 Colorado ... 54
5.4 Computer Hits Volume 2 (Beau-Jolly) .. 55
5.5 D50 Editor V2 (Dr.T) ... 57
5.6 Dragon flight ... 58
5.7 Dungeon Master (FTL Inc.) .. 59
5.8 Eco by Ocean ... 60
5.9 Golden Axe ... 61
5.10 Jupiter Masterdrive .. 62
5.11 Kick Off 2 (Anco Software 1990) ... 63
5.12 Maupiti Island ... 64
5.13 Night Shift (US Gold) ... 64
5.14 Obitus .. 65
5.15 Operation Neptune ... 65
5.16 Populous (Electronic Arts) .. 65
5.17 Power Drift .. 66
5.18 Sherman M4 .. 67
5.19 Star Glider 2 .. 67
5.20 Theme Park Mystery (Image Works) .. 68
5.21 Time of lore ... 69
5.22 Turrican ... 70
5.23 Vroom .. 71
5.24 Wizball, Ocean .. 72
5.25 Z-out .. 72

Chapter 6. References ...73
6.1 Documents / Articles ... 73
6.2 Forums Threads ... 73
6.3 Related Patents .. 74
6.4 Web Sites .. 74
6.5 FDC & Related Information ... 74
6.6 Game References ... 74

Chapter 7. Document history ..76

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 4 / 77

Chapter 1. Presentation
This document describes floppy disk protection mechanisms used on the Atari platform.
This type of copy protection is very old and, with many years of development and the usage
of sophisticated floppy disk hardware, it has conducted to numerous protection methods
frequently referred as key disk protection. The key disk protection method has at least two
obvious qualities: first, a key disk can be simultaneously used as protection and distribution
disk and second, this type of protection is very cheap but nevertheless hard to tamper with.
So, key disk protections have been widely used to protect Atari programs and games. To
fully understand the key disk based protections, you need to have some basic knowledge
about FD/FDC data and operation.

Some of the FD protection mechanisms are generic to many platforms while some are
directly related to a specific Floppy Disk Controller used on a specific platform. Therefore, in
order to get a general understanding, I have reviewed the FD protections mechanism used
on several platforms: Amiga, Commodore C64, PC, Tandy, Atari 8 bits and Atari ST 16 bits
(see the references section). Information about the different copy protection mechanisms
presented here is the result of experimentations and reading from the Web. Links to the
original information on Web sites can be found at the end of this document in the references
section.

In order to validate this document, I have analyzed the protections of many original floppy
disks with several programs that I have developed over time:
Â For detailed analysis of timing information, the first program that I have created is called

Analyze. It runs on Atari and PC. This program reads the flux reversals stream files
produced on Atari by the Discovery Cartridge and performs a detailed analysis. This
program takes its root in experiments I have done back in the 80s! The program is now
obsolete and replaced by the AUFIT program presented below.

Â For basic protection analysis I have created a program running on Atari called Panzer
(Protection ANalyZER) that automatically detects and reports many protections. This
program also provides the capability to directly run several FDC commands and analyze
the sectors and tracks information (including timing for track and sector) read.

Â KFAnalyze program reads input Stream files generated by the KryoFlux board. A
Stream file contains Atari FD information at the flux reversals level, it is therefore possible
to provide very accurate detections of protections especially those related to bit cell
timing variation. The heart of this program is a precise emulation of the Western Digital
WD1772 Floppy Disk Controller. The emulation mimics a full DPLL data separator and
provides functions equivalent to the read track, read address, and read sector
commands reading data directly from the Stream files. Therefore it is possible to process
the Stream information as if we were read by an Atari WD1772 FDC but with a lot of extra
information especially timing information. This is the ancestor of the Aufit program
presented below.

Â My latest program for analyzing Atari floppy disk content is called AUFIT (Atari Universal
FD Image Tool). It provides many features to analyze and display FD content at the flux
transition level (as provided by Kryoflux and Supercard Pro) using a nice Graphical User
Interface. Beyond FD content analysis, the programs also provides the capability to
convert the information in several Atari images formats (Pasti, ST, MSA) for emulation.

I want to thanks to many people on Atari forum for taking time to discuss some of the protections
presented here (See HERE and HERE).

http://www.atari-forum.com/index.php
http://www.atari-forum.com/viewtopic.php?t=9012
http://www.atari-forum.com/viewtopic.php?f=95&t=21952

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 5 / 77

Chapter 2. Copy protection s detail description
In this section I provide a detailed description of the different protectionôs mechanisms used
in Atari Key disks. The protections have been grouped into two categories:
Ï Protections based on data
Ï Protections based on timing

2.1 Protections based on data
This category contains protections based on using non-standard or impossible to write (on
Atari) data content in the tracks and/or sectors of a diskette.

A ñnormal disketteò has one or two sides (i.e. single or double sided) each having 80 tracks
numbered from 0 to 79. A more detailed description of formats can be found in the Atari Low-
Level Formats section.

A ñstandard trackò on an Atari is composed of 9 sectors each with 512 bytes of data
sequentially numbered from sector 1 until sector 9.

However it is not uncommon to use diskettes with up to 11 sectors and more than 80 tracks
as it allows packing more data. A good duplication/imaging program should be able to detect
and reproduce all these alternatives and therefore they are not really considered as
protection.

But beyond these basic variations of a disketteôs data content we will see that some
protections uses mechanism difficult to detect (so that a copy program would not easily find
them) and some that cannot be reproduced without special hardware.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 6 / 77

2.1.1 Number of t racks (NOT)

A ñnormal Atari disketteò has 80 tracks numbered 0 through 79 on each side. Some simplistic
protections are based on extra or missing tracks.

2.1.1.1 Extra tracks (EXT)
Â Description: A ñnormal Atari disketteò has 80 tracks numbered 0 through 79 on each

side. It is possible to write up to 82 or even 83 tracks on one side of a diskette. It is also
possible to ñhideò one or several tracks on the second side of an ñofficiallyò (as specified
in the boot sector) single sided diskette.

Â Creation: Easy to create on Atari. Note that some early Atari drives are single sided, and
some cannot position the head past track 79. Beware that using tracks over 82 has been
reported to damage some floppy drives.

Â Detection: You have to probe the diskette using FDC commands to check if some extra
tracks exist (probing 82 tracks is usually sufficient). For Single Sided diskette, you also
need to probe for hidden track on second side.

Â Duplication: Easy by software.
Â Emulation: Just need to store information about extra tracks.
Â Example: Passengers on the Wind (Infogrames) uses tracks 80 & 81.

2.1.1.2 Missing tracks (TNF)
Â Description: A ñnormal Atari disketteò has 80 tracks numbered 0 through 79 on each

side. It is possible that not all of these tracks are formatted. For detail description of
unformatted track please refer to Unformatted Diskette / Track / Sector. Note that it is
possible to hide data in a track that seems unformatted. Hiding data in what looks like an
unformatted track is usually difficult to detect (for example see Power Drift).

Â Creation: On a non-preformatted diskette you only need to format the ñnon-missingò
tracks. On a preformatted diskette (usually diskettes are sold DOS pre-formatted) you
need to mimic unformatted tracks by writing, for example, some random data to those
tracks without sync but the results is really not the same.

Â Detection: Using WD1772 commands: i.e. a seek command with the verify option should
fail on unformatted track, or a read address should not find any sector.

Â Duplication: If only the absence of sector is tested then it is easy to reproduce by
software.

Â Emulation: The preservation file needs to flag missing tracks (e.g. indicating 0 sector).
Â Examples: Barbarian (Track 74 ï 79 missing), Run the Gauntlet, Kick Off 2

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 7 / 77

2.1.2 Shifted t rack s (SFT)

Normally the first sector of a track starts shortly after the index pulse and the last sector of
the track end-up before the next index pulse. On a normal track, the post-index GAP (at
beginning of a track) is about 60 bytes and the pre-index GAP (at the end of a track) is about
600 bytes. In this case the track write splice (location where the floppy drive write gate is
turned on/off) is located at the index.

Sector 1

G2 ID G3bG3a DATA G4

Sector 2

G2 ID G3bG3a DATA G4 G5G1 G2 ID G3bG3a DATA G4 G2 ID G3bG3a DATA G4G5 G1

Sector n

Sector positions relative to the index pulse for a normal track

Several protections shift the position of the track relative to the index. Note that in this case
the track write splice is no more located at the index. The shifted track protections can be
further sub-classified as explained thereafter but usually this is irrelevant for emulation.

This type of protection is challenging for hardware copier. The copy should not be done from index to
index as this will results in a track write splice in middle of a data segment. The copy should start from
the first sector until the last sector using the corre ct shifted starting position with respect to the index.

2.1.2.1 Data over index (DOI)
Â Description: A sector where the Data Field span ñover the indexò. Normally all sectors of

a track should end up before the index pulse. Yet it is possible to create a track with a
total length that is slightly more than what a normal track can hold. This results in the last
sector ñwrapping aroundò the beginning of the track.

Sector 1

G2 ID G3bG3a DATA G4

Sector 2

G2 ID G3bG3a DATA G4 G5G1 G2 ID G3bG3a DATA G4 G2 ID G3bG3a DATA G4G5 G1

Sector n

Sector positions relative to the index pulse for a track with Data over Index

Â Creation:
Ï On Atari: it is possible to create a ñlong trackò with a total length that is slightly more

than what a normal track can hold (usually about 10 to 20 bytes). This is done by
placing the header of the last sector close to the end of the track. The write-track
command starts at the index pulse and continues until the next index pulse. Therefore
the last sector will be truncated during the format (i.e. write track) operation. However
the write-sector command on this truncated sector will execute normally and this will
result in data being written over and beyond the index pulse.

Ï On Mastering machine: Normally writing a track is triggered by the index pulse. It is
possible to shift the start of the write operation by some amount (for example time of 20
bytes) and of course to shift by the same amount the stop of the write operation.

Â Detection: The last sector spread over the index pulse but it is read as a normal sector
by a read-sector command. It is therefore necessary to use a read-track command to
find out that the last sector actually wrap over the beginning of the track or to somehow
measure the start position (timing) of the last sector.

Â Duplication: Once detected the duplication of such sector can be done by formatting
correctly the track.

Â Emulation: Requires to store the track and/or sector position in the preservation file.
Â Example: Kick Off 2 places almost all the data of one sector at the beginning of a track.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 8 / 77

2.1.2.2 Data beyond index-pulse (DBI)
Â Description: This is an extreme variation of the Data over index protection. Normally all

sectors of a track should end up before the index pulse but it is possible to create a track
where the ID Field for the last sector is placed at the very end of the track with the
corresponding Data Field placed at the very beginning of the track. You have to
remember that the Data Address Mark of the Data Field is to be found within 43 bytes
from the last ID Field CRC byte and therefore placement of the ID Field and
corresponding Data Field in the track is needs to be very accurate. The last sector ñwraps
aroundò the beginning of the track. See Computer Hits Volume 2 for an example.

Sector 1

G2 ID G3bG3a DATA G4

Sector 2

G2 ID G3bG3a DATA G4G1 G2 ID G3bG3a DATA G4 G2 ID G3bG3a DATA G4 G1

Sector n

Sector positions relative to the index pulse for a track with data field beyond index

Â Creation: It is almost impossible to position correctly such ID field on an Atari. Therefore
this protection was usually created with mastering machines. The track is shifted so that
the index pulse occur just at the end of the last ID field and of course the corresponding
data field is located at the beginning of the track.

Â Detection: This type of sector is read normally by the read-sector command. It is
therefore necessary to use a read-track command to find out that the last sector actually
spread over the beginning of the track or to measure the position of the last sector.

$ Note: The DMA can only transmit multiple of 16 bytes from the FDC. Therefore during a read -
track command, one or several of the last bytes (always less than 16) may not be transferred
by the DMA. Consequently it is possible that a read -track do not transfer the ID Field (or

transfer it partially) when it is placed at the very end of a track. However the FDC read -address
and read -sector commands read the ID field for this sector correctly.

Â Duplication: It is almost impossible to reliably place an ID field at the very end of the
track on an Atari due to floppy drives rotation speed variation. Therefore this protection
requires specific hardware to be reproduced correctly.

Â Emulation: Requires to store the track content and/or sector position.
Â Example: Computer Hits Volume 2 (Beau-Jolly)

2.1.2.3 ID over index (IOI)
Â Description: A sector where the ID Field span ñover the indexò. This is a variation of the

Data Over the Index-pulse protection. But in that case the index pulse happen inside an
ID field. Please refer to the Data Over Index-pulse protection for more details.

Â Creation: It is almost impossible to position an ID over the index on an Atari. Therefore
this protection could only be created on mastering machines.

Â Detection: It is usually not possible to read this ID using a read track command because
the ID segment is at the very end of the track and usually some data read get stuck in the
DMA buffer (see above). Even though this ID canôt be seen using a read track it can be
read normally using read address and read sector commands.

Â Duplication: It is almost impossible to reliably place an ID field at the very end of the
track on an Atari due to floppy drives rotation speed variation. Therefore this protection
requires specific hardware to reproduce the key disk.

Â Emulation: Requires to store the track content and/or the sector position.
Â Example: Colorado, Computer Hits Volume 2 disk 2.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 9 / 77

2.1.2.4 ID beyond index (IBI)
Â Description: This is an extreme variation of the ID over index protection. In this case

only the sync marks that belong to the last ID field are located before the index pulse but
the rest of the ID fields and the corresponding data field wrap around the trackôs
beginning.

Â Creation: It is impossible to position an ID beyond the index on an Atari. Therefore this
protection could only be created on mastering machines.

Â Detection: It is usually not possible to read this ID correctly using a read track command
because the sync of the ID segment are located at the end of the track and therefore not
seen by the read track command. Even though this ID canôt be seen using a read track
it can be read normally using read address and read sector commands.

Â Duplication: It is impossible to place an ID field at the very end of the track on an Atari
due to floppy drives rotation speed variation. Therefore this protection requires specific
hardware to reproduce the key disk.

Â Emulation: Requires to store the track content and/or sector position.
Â Example: Computer Hits Volume 2 second disk.

2.1.3 Track Layout Pattern (TLP)
Â Description: With the WD1772 FDC it is possible to slightly modify the layout of a track

by varying the number of characters in the gaps in different position of the track (e.g. vary
the length of the GAP4 placed between the different sectors). It is therefore possible to
create a track with a specific layout pattern different from the standard pattern. This is a
sort of floppy disk water-marking technique.

Â Creation: It is quite easy to format a track with specific values for each GAPs by sending
the appropriate information to the FDC during the write-track command.

Â Detection: Measure the layout of the different fields of the track using the read-track
command and look for a specific pattern. Note that some tolerance needs to be taken in
account as the number of bytes reported for a specific gap may vary from read to read.

Â Duplication: Once detected it is easy to duplicate by software.
Â Emulation: Requires storing the track information in the preservation file.
Â Example: Does not seems to be used on Atari?

2.1.4 Number of Sectors (NOS)
Â Description: The standard Atari FD format uses tracks with 9 sectors of 512 data bytes.

However many games use 10 or even 11 sectors per track just to pack more data on the
diskette. However alone number different from 9 should not be considered as a
protection. The following values are often used:
Ï Tracks with less than 9 sectors often use sectors with 1024 data bytes.
Ï Tracks with 11 sectors push several of the parameters that can be handled by the

WD1772 FDC close to their limits. This is especially true considering that the IBM
Floppy Drive standard allows a 3% rotationôs speed variation. These tracks are
therefore often referred as ñread onlyò because once written they canôt be modified.
This is due to very low number of bytes used in the GAP fields that does not allow for
the write sector command to work correctly.

Ï Tracks with 12 or more sectors (e.g. 70!) clearly indicate that some ñtricksò have been
used as 12 real sectors wonôt fit on a track.

Â Creation: Up to 11 is possible in software, but remember that with 11 sectors it is almost
impossible to write data consistently without using special hardware.

Â Detection: Easy with multiple read-address command.
Â Duplication: Easy in software for a number of sectors per track up to 10. Duplicating

track with 11 sectors is possible but more challenging.
Â Emulation: Requires nothing special the preservation file just needs to store the data

information for all the sectors of the track using read-sector commands.
Â Examples: Computer Hits Volume 2: 11 sectors / track, Theme Park Mystery: 12 sectors

/ track, Sherman M4: 70 sectors / track.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 10 / 77

2.1.5 Sector Sizes (SSZ)
Â Description: Normally the tracks have sectors with 512 bytes long Data Field. But it is

possible to create a track with different data field size (usually a mixture of 512 and
1024)1. This is a more reliable approach to increase the overall capacity of a track rather
than using 11 sectors of 512 bytes. Non-standard sector size are not be considered as a
protection. Two common examples of format with different sector size are:
Ï 9 sectors of 512 bytes plus 1 sector with 1024 bytes, and
Ï 5 sectors of 1024 bytes plus 1 sector with 512 bytes.

Â Creation: Easy on Atari.
Â Detection: Easy with multiple read-address command.
Â Duplication: Easy on Atari.
Â Emulation: Requires nothing special the preservation file just needs to store the data

information for all the sectors of the track using read-sector commands.
Â Examples: Kick Off 2, Turrican uses tracks with a mixture of 1024 and 512 bytes sectors.

2.1.6 Invalid ID Field (IIF)

An ID Field contains the following information after the ID Address Mark: the Track Number,
the Side/Head Number, the Sector Number, the Sector Length, and two CRC bytes.
To understand these protections you need to know that during a read-sector command
when an ID Field is located on the disk, the WD1772 compares the Track Number of the ID
Field to its internal Track Register. If there is no a match, the next ID Field is read and a
comparison is made again. If there is a match, the Sector Number of the ID Field is
compared with its internal Sector Register. If there is no Sector match, the next encountered
ID Field is read off the disk and a comparison is made again. If both matches and if the ID
Field CRC is correct, the sector is located and an internal register is loaded with the Sector
Length. Invalid ID field can further be decomposed:

2.1.6.1 Non-standard IDAM (NSI)
Â Description: The normal IDAM (ID Address Mark) used by the WD1772 is the character

$FE which is sent after a sequence of 3 $A1 sync marks. An undocumented feature of
the WD1772 is that it accepts any character in the range $FC-$FF as an IDAM2.

Â Creation: During a write-track command it is possible to use any value in the range
$FC-$FF instead of the normal $FE IDAM character.

Â Detection: As the read-address command and the read-sector command execute
normally it is easy to hide the fact that a non-standard IDAM has been used. Detection
can be done using a read-address command.

Â Duplication: Once detected this protection is easy to duplicate.
Â Emulation: Requires to store the track information as well as the address information.
Â Example: Z-out

1 Note that several of the BIOS calls will not work for sectors with size different than 512.

2 Note that, in MFM, for the marks characters between $F8 and $FF the least significant bit is
always ignored by the WD1772 and therefore : $F8 = $F9, é, $FE = $FF

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 11 / 77

2.1.6.2 Invalid track number (ITN)
Â Description: A sector with an ID Fields that contains a track number different from the

actual track number (in FDC register). In order for the type I commands (e.g. seek) to
succeed, on such a track, the verify bit has to be reset. Otherwise the FDC check that at
least one sector has the correct track number. The read-sector command using
ñstandardò parameters will also fail.

Â Creation: Use write-track command with incorrect track number in ID Field.
Â Detection: The read-sector command compares the track number of the ID Field with

the track register if this matches it then compares the sector number of the ID Field with
the sector register. If any compare operation fails the FDC retry 5 times then terminate
the command with a record not found (RNF) error. Reading this kind of sector is possible
but requires playing with the FDC registers (i.e. loading the track register with invalid
value).

Â Duplication: Easy by software
Â Emulation: The preservation file should store the exact ID block.
Â Example: Star Glider 2, Dragonflight

2.1.6.3 Invalid head number (IHN)
Â Description: An ID field with an invalid Side/Head Number (i.e. not equal to 0 or 1).

Normally this field is supposed to be equal to the side you are reading however it should
be noted that the WD1772 does not use this information so any value can be used.

Â Creation: It is possible to write invalid values for the Side Number of an ID Field by
sending the appropriate data to the FDC during a write-track command.

Â Detection: Use a read-address command and compare the side value.
Â Duplication: Can easily be done by software
Â Emulation: The exact content of the ID field need to be saved in the preservation file.
Â Example: Star Glider 2, Dragonflight

2.1.6.4 Invalid sector number (ISN)
Â Description: During the format command the character loaded into the data register of

the WD1772 is written to the disk. However the characters $F5 and $F6 are used to write
respectively the Sync Characters $A1 and $C2 with a missing clock transition and the
character $F7 is used to generate two CRC bytes. This implies that it is not possible to
create a sector with an ID ranging from 245 through 247 ($F5-$F7). In fact the WD1772
documentation indicates that the sector number should be kept in the range 1 to 240.

Â Creation: It is not possible to create a sector with an ID in the range of 245-247 with the
WD1772 FDC and therefore creating such ID Field requires specific hardware.

Â Detection: Can easily be done with a read-address command.
Â Duplication: Requires special hardware.
Â Emulation: The sector with an invalid ID number is read as a normal sector by a read-

sector command and stored in the preservation file like any other standard sector.
Â Example: Dungeon Master (FTL Inc.) use a sector number of 247 ($F7) on track 0

It is actually possible to write a byte between $F5 -$F7 inside an ID field using the escaping capability
of the WD1772 see WD1772 MFM track language.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 12 / 77

2.1.6.5 Invalid sector length (ISL)
Â Description: An ID field with an invalid Sector Length (i.e. not in range 0-3). Normally

this field is supposed to take the value 0, 1, 2, 3 corresponding to respectively 128, 256,
512, 1024 data bytes size. As the WD1772 only uses the last three bits of the sector
length information it is possible to write sector length value larger than 3. For example
0x03 and 0xFF are equivalent.

Â Creation: It is possible to write invalid values for the Sector Length of an ID Field by
sending the appropriate data to the FDC during a write-track command.

Â Detection: Use a read-address command to get all the fields.
Â Duplication: Can easily be done by software.
Â Emulation: The exact content of the ID field need to be saved in the preservation file.
Â Example: Star Glider 2 Z-Out.

2.1.6.6 ID CRC Error (ICE)
Â Description: A sector that has a CRC error in the ID Field. This results in a sector that

cannot be read by the read-sector command.
Â Creation: Easy with the write-track command. For example by sending 2 normal bytes

(e.g. $00, $00) at the end of the field instead of one "Write CRC" character ($F7).
Â Detection: It is possible to read this kind of sector ID field with a read-address command

and to verify that it has a wrong CRC. But it is not possible to read the sector with a read-
sector command.

Â Duplication: Can easily be done by software
Â Emulation: Requires to store the complete track and address information in the

preservation file.
Â Example: xxx

2.1.7 Duplicate Sector Number (DSN)
Â Description: A track where, two (or more) sectors use the same sectorôs number. Using

blindly a read-sector command, for this duplicated sectors, result in reading randomly
one of the two sectors based on current head position. In order to read a specific one, it
is necessary to issue a read-sector command delayed by a specific amount of time from
the index pulse. Usually, to facilitate the detection, these two sectors are placed well
apart (e.g. at the beginning and the end of the track). Sometimes the second ID field is
not followed by a corresponding data field (no sector block protections).

Â Creation: Easy in software.
Â Detection: Easy by using read-address and/or read-track commands.
Â Duplication: Easy in software.
Â Emulation: The information for all sectors including the duplicate sector needs to be

saved. In is also necessary to store the position of the sector in the track.
Â Example: Night Shift uses a duplicated sector numbered 66 (the duplicated sectors also

use the no data block protections).

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 13 / 77

2.1.8 Sector within sector (SWS)
Â Description: During formatting it is possible to place a new sector that overlap with a

previous one. Therefore when reading these sectors we have the impression that the
second sector is located within the first one. The layout of a first sector contains the
fields: GAP2-ID Field-GAP3-Data Field-GAP4. The included sector has its own GAP2-ID
Field-GAP3-Data Field placed inside the Data Field of the including sector. This is
possible because during a read-sector command the sync mark detector of the WD1772
is turned off and therefore the included field are treated as normal data (sync sequence
not recognized). A detailed explanation of this protection can be found in the Theme Park
Mystery example. An even more complex variant is to have a sector within another sector
which is itself located within another sector (SWSWS). Even with such a complex layout it
is possible to read correctly an ñincluded sectorò! For an example of SWS-WS-WS look at
Computer Hits Volume 2. It is also possible to shift by one bit-cell the included sector in
respect to the including sector. This trick allows to read data bits as well as clock bits of
the overlapped data field as in Turrican to check presence of NFA.

Â Creation: Only possible in specific cases on Atari and therefore usually requires usage of
specific hardware.

Â Detection: The read-address command allows to read the ID fields of the including and
included sectors. The read-sector command reads the including sector beyond the start
of the included sector because during a read-sector command the sync mark detector of
the WD1772 is turned off. The included sector is read normally as if no including sector
was placed before. Usually look for this protection when a track has a number of sector
equal or exceeding 12. To confirm this protection you can use a read-track command.
Another alternative is to check the data inside the including sectorôs Data Field and look
for GAP2 followed by an ID Field etc. However beware that this will not always work due
to the way the FDC works. For example it is not possible to find the ID and DATA field of
sector 16 inside sector 0 of track 2 of Computer Hits Volume 2 because it is shifted.

Â Duplication: Require special hardware. Often combined with other protections like NFA.
Â Emulation: Once the protection is detected the preservation program should store the

track layout and the information about the including and following sectors.
Â Example: Theme Park Mystery, Computer Hits Volume 2, Turrican, Nitro Boost

Challenge

2.1.9 Non Standard DAM (NSD)
Â Description: The normal DAM (DATA Address Mark) used by the WD1772 is either the

character $FB for normal data and $F8 for deleted data which is sent after a sync
sequence of 3 $A1 sync marks. An undocumented feature of the WD1772 is to accept
the any character $F8-$FB as a DAM (see also Non Standard IDAM).

Â Creation: During a write-track command it is possible to use $FC or $F9 instead of the
normal $FB or $F8 DAM character.

Â Detection: As the read sector command execute normally it is easy to hide the fact that
a non-standard DAM has been used. Detection can be done through a read track
command where you have to look for a $FC/F9 character instead of $FB/F8 in the header
of the DATA field. Note that when an alternate DAM is used, the DATA Field still reads
without a CRC error.

Â Duplication: Once detected this protection is easy to duplicate.
Â Emulation: Requires storing the complete track in the preservation file.
Â Example: No example found

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 14 / 77

2.1.10 Sector with No ID (SNI)
Â Description: A sector with a Data Field but not preceded by an ID Field.
Â Creation: on Atari it is quite easy to format a sector of a track with a DATA field not

preceded by an ID Field using a write-track command.
Â Detection: There is no way to read this kind of sector with a read sector command.

Therefore the only way to detect the presence of such data field is by using a read track
command. Therefore this kind of sector it is very rarely used.

Â Duplication: Can easily be done by software.
Â Emulation: Requires storing the track information in the preservation file.
Â Example: Gunship (D1 from Air Supremacy Compilation), Vroom after sector 106 has a

fuzzy SNI (see Fuzzy Track (FZT))

2.1.11 Sector wit h No Data (SND)
Â Description: A sector with an ID Field but not followed by a Data Field.
Â Creation: on Atari it is quite easy to format a sector of a track with an ID field not followed

by a Data Field using a write-track command.
Â Detection: This kind of sector is found using a read-address command, but is not found

using a read-sector command. This is because during the read-sector command the
FDC expects to find a DAM/DDAM within 43 bytes from last ID Field CRC byte, if not the
sector data is searched again for 5 revolutions and the command is terminated with the
Record Not Found (RNF) Status bit set.

Â Duplication: Can easily be done by software.
Â Emulation: Requires storing the track information in the preservation file.
Â Example: Night Shift uses duplicate sectors 66 both of them having No Data fields

2.1.12 Data CRC Error (DCE)
Â Description: A sector that has a CRC error in its Data Field.
Â Creation: Easy during write-track command by using the same mechanism as

described in Invalid ID CRC.
Â Detection: Can easily be done using a read-sector command. The data sector is read

normally but the CRC error status bit is set at the end of the command.
Â Duplication: Can sometimes be done in software.
Â Emulation: The content of the sector should be stored as normal but the CRC error

indicator must be added to the preservation file.
Â Example: Populous

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 15 / 77

2.1.13 Data Track (DTT)
Â Description: This kind of track does not contains the Atari standard ID / Data / Gap

fields. The track is usually composed of a special Header field followed by a Single Data
field. In order to be read correctly the Header needs to be preceded by 3 $A1 sync
marks. The only way to read the Single data field is to use a Read Track command.
Remember that during a Read Track command the sync detector of the WD1772 is
active at all time and therefore any MFM sequence of bits that contains 0x000101001 will
cause the FDC to resynchronize and consequently the data are not read correctly after
that. To avoid a resynchronization an escape character (often 0x07 or 0x0F) is inserted
whenever the input data contains this sequence. When the track is read the escape
characters are removed to get back the original data.

Â Creation: As the Data record can contains ñinvalid codeò (i.e. code like 0xF5-0xF7) it
canôt be written using a Write Track command. It is therefore mandatory to use special
hardware to write this kind of track.

Â Detection: A Read Track command is used. The software looks for at least three 0xA1
then decode the rest of the Header and then read the data record according to parameter
passed in the header. A checksum is often added to the data field and can be used to

verify that the data record has been read correctly .
Â Duplication: Not possible in software requires special hardware.
Â Emulation: For emulation it is necessary to save the complete content of the track as

read by the Read Track command.
Â Example: Maupiti Island (escape character 0x07), Golden Axe, Hot Rod, International

Soccer (escape character 0x0F), Albedo

It is even possible to split the track into several ñpseudo-sectorsò. For example in Albedo the track is
split into 5 pseudo-sectors

2.1.14 Hidden Data into GAP (HDG)
Â Description: It is possible to write hidden data into any gap. However hidden data are

usually placed in the post DATA Gap (Gap of 40 bytes) as well as in the pre and post
index GAP (respectively 664 and 60 bytes on standard diskettes). See ñcopy me I want to
travelò from Claus Brod for a complete explanation and some interesting examples. There
are some known sequence described in Hidden data using spurious sync sequence.

Â Creation: Extra data can be written into Gap only during the write-track command. It is
recommended to use Sync Marks in front of the data to be able to read them correctly.

Â Detection: You need to use a read-track command to be able to read the inter-sector
information. But it hard to find this information if you do not know what and where to look
for. Therefore some heuristic need to be used (e.g. presence of sync marks into GAP).

Â Duplication: Although it is difficult to detect, it is easy to reproduce with the write-track
command.

Â Emulation: Requires storing the track information in the preservation file.
Â Example: Jupiter Masterdrive, Dragonflight, Union Demo

2.1.15 Hidden data into nonstandard tracks (HDT)
Â Description: It is possible to hide data into a nonstandard track.
Â Creation: Only possible on an Atari if no invalid bytes are used.
Â Detection: Use the read track command.
Â Duplication: Not possible if invalid bytes used.
Â Emulation: Requires storing the track information in the preservation file.
Â Example: Realm of the Troll track 79.0

http://info-coach.fr/atari/hardware/_fd-hard/cb-copy-me.pdf
http://info-coach.fr/atari/hardware/_fd-hard/cb-copy-me.pdf
http://www.clausbrod.de/cgi-bin/view.pl/Atari

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 16 / 77

2.1.16 Invalid Data in Gap (IDG)
Â Description: During the format command character loaded into the data register of the

WD1772 is written to the disk. However the characters $F5 and $F6 are used to write the
Sync Marks and the character $F7 is used to generate of two CRC bytes. This implies
that it is not possible to have a character ranging from 245 through 247 ($F5-$F7) inside
any of the GAPs3. Reading these characters into GAPs requires using a read-track
command. In order for these invalid characters to be read correctly with a read-track
command they are usually preceded by one or several sync character. Be aware that the
byte $F7 can be used to escape special character (see WD1772 MFM track format
language).

Â Creation: It is not possible with the WD1772 to write a character within the range 245-
247 into any GAP. Therefore writing invalid character into GAPs requires mastering
machines.

Â Detection: Can easily be done with a read-track command.
Â Duplication: Require special hardware.
Â Emulation: It is necessary to save the complete content of the track.
Â Example: Operation Neptune & Bob Morane uses 0xF7 as gap bytes

2.1.17 Invalid Sync-mark Sequence (ISS)
Â Description: A normal Sync mark sequence is composed of 3 Sync Marks (3 x $A1or

3 x $C2) followed by an Address Mark (IAM = $FC, IDAM = $FE, DAM = $FB, or DDAM
= $F8). Any other sync sequence is considered as invalid. Note that an invalid sequence
is usually used to sync up the data separator in order to read data into gap or for the Data
track protection. But it is also abnormal to have less than 2 or more than 3 Sync Marks in
sequence. See also Invalid Sync sequence.

Â Creation: It is quite easy to create an invalid sync mark sequence during format by
sending appropriate information to the FDC using the write-track command.

Â Detection: Only possible with the read-track command as the read-sector command
just ignore invalid sync mark sequences.

Â Emulation: Requires storing the track information in the preservation file.
Â Duplication: Easy by software.
Â Example: Barbarian (one Sync alone on Track 0, series of Sync on Track 48 & 62)

2.1.18 Parti ally formatted track (PUT)
Â Description: Inside what looks like an

unformatted track it is possible to hide a
sector.

Â Creation: This kind of track can only be
created using special hardware.

Â Detection: The program verify that it can
only reads the known sector and that no
other sector exist.

Â Emulation: Requires to store the content of
the read track command in the preservation
file.

Â Duplication: Requires special hardware.
Â Example: Eco tracks 77 & 79

3 Note that it is not possible to modify the GAP2 or GAP3b ($00). Therefore writing hidden
bytes must be done in GAP1 and/or GAP3a and/or GAP4

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 17 / 77

2.1.19 Fuzzy Sector (FZS)
Â Description: A sector that contains fuzzy bits. Reading

this sector several times returns different data.
Â Creation: Cannot be created on Atari, requires mastering

machines. Please refer to the fuzzy bits section.
Â Detection: The flowchart on the right describes a copy

recognition routine that tests for fuzzy bytes in the data
field (patent 4,849,836). The protected sector that contains
fuzzy bytes is read several times and randomness of the
returned data is checked. If the same data is read several
times on the protected sector the program is not executed.
Very often, as in Dungeon Master, the protection is verified
several times during execution of the game/program.

Â Duplication: Difficult and requires special hardware.
Â Emulation: The preservation file should have an indicator

to record the fact that a sector has Fuzzy bytes. Usually
the first and last 32 bytes of a fuzzy sector do not contain
fuzzy bytes. It is also good to store information about bits
that have changed in the different read operations.

Â Example: TODO

2.1.20 Fuzzy Track (FZT)
Â Description: This is somewhat similar to Fuzzy Sector: the

protected track that contains fuzzy bits is read several
times and randomness of the returned data is checked.
This is usually done in specific areas as explained below.

Â Creation: Cannot be created on Atari, requires special
hardware. Please refer to the fuzzy bits section.

Â Detection: If you know the location of the fuzzy bytes, it is easy to read the same data
several times and to check that returned data are different. However detecting fuzziness
in a read track without specific information is difficult because there are many reason why
a read track returns random data in several places. For example the beginning of a track
reads differently until the first sync because the position where the read track starts vary.

Â Duplication: Difficult and requires special hardware.
Â Emulation: The preservation file should have an indicator to record the fact that a track

has a Fuzzy data track. Note that Pasti STX does not support this kind of protection.
Â Examples: Power Drift (track 1 side A of floppy disk 2). Vroom.

START

Store read data

count = 0

Read copy

protected sector

count++

Read copy

protected sector

same data

count > n

Execute Program

END

YES
NO

NO

YES

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 18 / 77

2.2 Protections based on timing
This section describes the protections based on variations of the standard 4 µs cell bit-rate.
Although different techniques are used, the result of using bit-rate variation is always the
same (with the exception of NFA): the overall time-length of a byte read from the drive, is
different from a ñnormal 32 µs byteò. Therefore detection of this protection requires to be able
to measure timing information when reading the block of bytes that compose a sector.

2.2.1 Long / Short Sector (LGS & SHS)
Â Description: This kind of sector can be created by writing a sector of a track with an

apparent rotation speed of the drive slightly above or below the normal speed. In practice
this is obviously not done by varying the rotation speed of the drive but by changing the
bit-cell clock. This results in a reading time for this sector above or below the reading time
of a ñnormal sectorò. The IBM standard specifies that the FDC circuitry should handle a
variation of the driveôs rotation speed within ± 2% range. Therefore the DPLL of a FDC is
supposed to accept at least a 4% variation. But in practice the WD1772 DPLL (See
WD1772 DPLL Input Circuitry) can handle at least 10% variation for MFM encoding (as
described in this DPLL Patent). It is therefore possible to write sectors with bit cells at
frequencies between 225 and 275 KHz (corresponding respectively to 3.6 to 4.4 µs bit
width) and to still be guaranteed to read the data correctly. However the resulting sector
will be longer or shorter than a normal sector. The most famous usage of this protection
was done by Rob Northen in the Copylock (RNC) protection mechanism4 (see an
interview with Rob Northen): in this case the bit width is changed to approximately 4.2µs
(about 4 to 5% variation) to result in a shorter sector. The beginning of the sector (for
about 32 bytes) is written at normal speed so that we are sure that the data in this section
are always read correctly.

Â Creation: Cannot be done on an Atari. It requires mastering machines with the capability
to vary the bit cell width on the fly.

Â Detection: canôt be done with standard TOS call. It requires to use specific routines to
measure the time it takes to read the bytes in the short/long sector.

Â Duplication: Difficult and requires special hardware.
Â Emulation: The preservation file should store timing information about the sector.
Â Example: Populous - Track 0 Sector 6, Back to the Future (T0-S6)

4 According to vauvillf: there has been 2 RNC. The old one used for example on Arkanoid2,
and Thundercatsé It was possible to copy RNC-1 with the acopy program (only 2 to 3
times). Then there was a big evolution of the RNC protection sometime in 1988: with this one
it was no more possible to copy the protection by software, and it was also using the famous
trace decoding loop. Apparently the description provided here refers to the RNC-2 protection.

http://www.codetapper.com/amiga/interviews/rob-northen/
http://www.codetapper.com/amiga/interviews/rob-northen/

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 19 / 77

2.2.2 Long/ Short Track (LGT & SHT)
Â Description: This kind of track can be created by writing all bytes of a track with an

apparent rotation speed of the drive slightly above or below the normal speed. This
results in a track that contains more or less bytes than a normal 6240 bytes track. In
practice this is obviously not done by varying the rotation speed of the drive but by
changing the bit-cell width. The IBM standard specifies that the FDC circuitry should
handle a variation of the driveôs rotation speed within ± 2% range. Therefore the DPLL of
a FDC is supposed to accept at least a 4% variation. But in practice the WD1772 DPLL
(See WD1772 DPLL Input Circuitry) can handle a 10% variation for MFM encoding (as
described in the DPLL Patent). It is therefore possible to write sectors with bit cells at
frequencies between 225 and 275 KHz (corresponding respectively to 3.6 to 4.4 µs bit
width) and to still read the data correctly.

Â Creation: It requires special mastering machines that can vary the bit cell width on the
fly.

Â Detection: You can use a read track command. The normal track length is around 6240
bytes and it is sufficient to checks that the track has more (or less) than a 5% above the
nominal value (e.g. less 6027 in Arkanoid).

Â Duplication: Difficult and requires special hardware.
Â Emulation: The preservation file should store timing information about the track as well

as the number of bytes of the track.
Â Example: Arkanoid , Indiana jones last crusade, Guntlet II, Garfield, speedball

Awesome (T79 < 6000 bytes)

2.2.3 Sector Bit -rate Varia tion (SBV)
Â Description: This is a more difficult to detect bit-rate variation. A sector is divided into

several segments. Each of them uses a ñdrive rotation speedò slightly above or below the
normal speed. By using faster and slower segments in the same sector it is possible to
have the timing of these segments to compensate resulting in a sector with a normal
overall timing. For example the Macrodos protection from Speedlock Associates divides
a sector into 4 segments with normal-faster-slower-normal rotation speed resulting in an
overall standard time length.

Â Creation: Requires special hardware that have capability to vary the bit width.
Â Detection: It is quite difficult to detect this protection because the overall sector length is

the ñnormalò length. It is therefore necessary to measure the timing of blocks of
characters (usually multiple of 16 using DMA transfer) that compose a sector and to
compare them to standard block length to check for specific above or below patterns.

Â Duplication: Require specific hardware
Â Emulation: The preservation file should store detail timing information about the sector.

On Atari it is only possible to store timing information about reading a 16 bytes block.
Â Example: Golden Axe, Colorado, Starblade, Treasure Trap, Damocles

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 20 / 77

2.2.4 No Flux Area (NFA)
Â Description: A track that contains a very long area without reading flux transitions.

Note that this is quite different from an unformatted area (no flux transitions recorded)
because reading an unformatted area return many random flux transitions due to the fact
that the gain of the amplifier (ACG) on the read channel is pushed to its maximum
resulting on picking up noise on the head. In order to produce such area some tricks
needs to be used as explained in the No Flux Area on Disk section. This is difficult to
produce even with specialized hardware.

Â Creation: Requires specific hardware.
Â Detection: No Flux Area result in reading 0x0000 MFM word in the FDC shift register (no

clock transition and no data transition). However the WD1772 FDC only allow to read the
data bytes of the MFM word but not the clock bytes. It is therefore not possible to directly
check that the clock bytes in an NFA are also null. This is why the NFA protection places
the no flux area in a sector within another sector, where the included sector is shifted by
a half-cell. The including sector allows to read the ñdata partò of the NFA and the included
sector allows to read the ñclock partò of the NFA. For more information refer to Checking
NFA with the WD1772 section.

Â Duplication: Difficult and requires special hardware.
Â Emulation: The preservation file need to save the track data and also needs to save the

two sectors that allow to read the data and the clock.
Â Example: Turrican.

Here is an example of a NO Flux Area that is located over the index. As indicated the NFA is
4.27ms long, starts before the end of the track, and wrap around the index.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 21 / 77

Chapter 3. Preservation of Atari floppy disks
Information presented in this document about protection mechanisms can help in the
design of techniques/programs for duplication or preservation of original Atari diskettes
with the following philosophy:

$ A preservation technique should always do the most to ensure the integrity of the preserved
data. The preserved data should operate just like the original and not remove any protection, or

modify the program being preserved in any way. The preservation technique must do the up

most to check that the preserved data is identical to the original.

Specially designed programs can duplicate key disks for many of the ñsimpleò protections
presented here. But duplication of key disks using more advanced protections requires using
specially designed hardware like the vintage Discovery Cartridge or the recently released
KryoFlux and SuperCard Pro devices. Analog hardware copiers, like the Blitz cable and
associated software, can sometime create a working copy of a protected diskette but they do
not fulfill the above requirements of producing a copy identical to the original.

Preservation has different meanings for different people but it can be classified into two
categories:
Â A ñreal preservationò is intended to save all the required information from a floppy disk so

that it is not only possible to emulate the original FD but it is also possible to physically
duplicate the original FD. For example the files produced by the Discovery Cartridge,
the KryoFlux, and the SuperCard Pro devices allow to emulate or to backup protected
disks.

Â An ñemulation preservationò is intended to save enough information from a floppy disk so
that it is possible to emulate the behavior of the original FD in a software or hardware
emulator. For example the files produced by the Pasti imager allow to emulate protected
disks. However it is not possible to recreate a FD from Pasti files.

It is interesting to note than most emulation / duplication programs do not care about (and
sometimes canôt detect) the detailed underlying protection mechanisms used. They just store
enough information to replicate the effect of a specific protection. For example they detect
fuzzy bytes but they do not care if they result from bits in Ambiguous areas, or from bits rate
violation.

In the following sections we are going to explain how to correctly use several devices
specially designed to preserve Atari floppy disks.

3.1 Cleaning a floppy disk to create correct image
Here are some basic rules to follow to create the best possible image:
Â Use a known good original: Always use original disk that has not been modified.
Â Write protect your original: In order to keep an unmodified disk always make sure that the

original have the protect notch in the correct position at all time you use the disk including
during the imaging operation.

Â Clean your original: Atari floppy disks games are getting very old. They are prone to be
dirty even if not used too much because of the environment. This results in deteriorated
magnetic signal picked up by the read head. Carefully clean your disks with rubbing
alcohol and cotton swabs. Rotate the disk in its jacket, cleaning the surface until no more
residue is found on a clean cotton swab.

Â Clean your floppy drive head: After reading several disks the head will have accumulated
a lot debris. Clean the driveôs head with a commercial head cleaner or by using the same
rubbing alcohol and cotton swab technique used to clean your disks.

3.2 Why do we need several revolutions for preservation?
You might be tempted to sample flux transition for only one revolution in order to save space
on hard disk. However for preservation this wonôt work for the following reasons:

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 22 / 77

Â For duplication you can usually sample the flux transitions of only one revolution. You
should get a perfect backup of the original floppy if
Ï your original is in perfect condition,
Ï you have set all parameters of you iamging device correctly, and
Ï If the floppy you use for the backup is also in perfect condition.

Â For preservation you must sample the flux transitions of at least three revolutions. But
it is recommended to sample five revolutions in order to be able to verify the integrity of
the sampled data as explained below.

The rational for using five revolution is the following:
Ï By definitions fuzzy bytes are detected by reading several times the same bytes and

comparing if the values are different. Therefore this kind of protection implies to sample
at least two revolutions but three or more is preferred (majority rule).

Ï Many Atari games uses protections based on shifted tracks. In such a case the region
ñunderò the index belongs to an ID or a DATA field and therefore it is not possible to
start reading or writing data at the position of the index (this must be done at the
location of the track write splice). Therefore this kind of protection implies to sample at
least two revolutions. The combination of the last two requirements result in the
necessity to sample at least three revolutions.

Ï Because of the age of the floppy disks, the magnetic signal picked up by the read head
is often distorted. A program like AUFIT uses advance DPLL algorithm that allows to
recover many imperfection on the read flux transitions but unfortunately this is not
always sufficient. By sampling extra revolutions it is possible to combine data from
multiple revolutions to recover the original information. For example Aufit is able to
select and use a correct sector (one with a good CRC) among multiple revolutions. The
more revolutions you have imaged the more chances you have to recover!

Therefore based on the above if you want to reliably preserve information from a floppy disk
it is recommended that you use 5 revolutions.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 23 / 77

3.3 Kryoflux short presentation
Using Kryoflux for preservation is pretty simple. Start the DTC GUI
(kryoflux-ui.jar) and in the select output field of the control section
select multiple. This open a new window and here select
Kryoflux stream files, preservation and CT Raw image. This will

save the stream RAW files
in a separate directory as
well as the CTA raw file.

By default Kryoflux device
settings are set to preserve
5 revolutions and sample
up to the maximum track number.

Therefore you just need to specify the image path (in
file settings), the output name and start imaging.

3.4 Supercard Pro short presentation
Supercard Pro can be used to just backup (duplicate) Atari floppy disks or it can be used for
real preservation. These two usages have different requirements:
Â For duplication you can usually sample the flux transitions of only one revolution. If your

original is in perfect condition, if you have selected the correct mode, and if the floppy you
use for the backup is also in perfect condition then you should get a perfect backup.

Â For preservation you must sample the flux transitions of five revolutions in splice mode.

For Supercard Pro you must change the
Revolutions value to 5 and the end track
number to 82 each time you want to preserve
a floppy as these values are not automatically
saved (even using the save configuration
command).

http://www.kryoflux.com/?page=kf_features
http://www.kryoflux.com/?page=kf_features
http://www.cbmstuff.com/proddetail.php?prod=SCP
http://www.cbmstuff.com/proddetail.php?prod=SCP

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 24 / 77

Chapter 4. Technical Information
This chapter contains technical information that helps to understand in detail how data are
written on floppy disks and how the WD1772 really work.

4.1 Atari Low-Level Formats
The Atari ST uses the Western Digital WD1772 Floppy Disc Controller (FDC) to access the 3
1/2 inch (or to be more precise 90mm) floppy diskettes. Western Digital recommends to use
the IBM 3740 Format for Single Density diskette and to use the IBM System 34 Format for
Double Density diskette. Actually the default format used by the Atari TOS is slightly different
(closer to the ISO Double Density Format) as it does not have an IAM byte (and associated
the associated GAP), before the first IDAM sector of the track (see diagram below).
However the WD1772 (and therefore the Atari) is capable of reading both format without
problem but the reverse is usually not true.

IBM System 34 Double Density Format (produced on a DOS machine formatting in 720K)

ISO Double Density Format.

Below is a detail description of the Standard Atari Double Density Format created by the
early TOS.

Note: Many different conventions have been used to decompose and name the GAPS of a
track. This document uses a GAP numbering scheme which is a combination of the IBM and
ISO standards. It also decomposes the GAP between the ID record and the DATA record.
Usually only one gap is described between these two records but in this document it is
decomposed into an ID postamble gap (Gap 3a) and a DATA preamble gap (Gap 3b). This
allows a more detail description, but of course they can be recombined into one more
standard gap (Gap3). Although not shown in the diagram below a floppy formatted on an IBM
has an extra IAM (index address mark) before the first sector. In that case the Gap1 is
decomposed into two gaps: A post index gap (Gap1a) and a post IAM gap (Gap1b).

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 25 / 77

The table below indicates the values of the different gaps usually used for standard Atari
diskette with 9 sectors of 512 user data bytes. It also indicates the minimum acceptable
values (as specified in the WD1772 datasheet) of these gaps when formatting nonstandard
diskettes.

NAME STANDARD VALUES (9
SECTORS)

MINIMUM VALUES
(DATASHEET)

Gap 1 Index postamble 60 x $4E 32 x $4E
Gap 2 ID preamble 12 x $00 + 3 x $A1 8 x 00 + 3 x $A1
Gap 3a ID postamble 22 x $4E 22 x $4E
Gap 3b Data preamble 12 x $00 + 3 x $A1 12 x $00 + 3 x $A1
Gap 4 Data postamble 40 x $4E 24 x $4E
Gap 5 Index preamble ~ 664 x $4E 16 x $4E

Standard Sector Gaps Value (Gap 2 + Gap 3a + Gap 3b + Gap 4) = 92 Bytes / Sector
Minimum Sector Gaps Value (Gap 2 + Gap 3a + Gap 3b + Gap 4) = 72 Bytes / Sector
Standard Sector Length (Sector Gaps + ID + DATA) = 92 + 7 + 515 = 614 bytes

Note that the minimum values as specified in the WD1772 datasheet are not respected in the
case of a track formatted with 11 sectors:
Minimum Sector Length (Sector Gaps + ID + DATA) = 72 + 7 + 515 = 594

The ID and DATA preamble are used to lock the PLL and should normally be kept as 12 $00
bytes. The FD format do not reserve a write splice byte (where the head write current is
switched on or off) and therefore it should be considered as part of the data preamble field
for format and write operations, and as part of the ID postamble for read operations.

One complete ID/DATA segment looks like this

22 x 4E 40 x 4E12 x 00 3 x A1
DAM FB or
DDAM F8 User Data 512 Bytes CRC1 CRC 212 x 00 3 x A1IDAM FE Track # Side # Sect # Size CRC1 CRC 2

Write Gate

ID Segment

ID Field ID postamble Data preamble Data Field Data postambleID preamble

Data Segment

As this format does not define any precise location write splice field, it should be included as
part of the DATA preamble field for format and write operations and as part of the ID
postamble for read operations.

4.1.1 Format for 9/10/ 11 Sectors of 512 Bytes

Note that the 3 1/2 FD are spinning at 300 RPM which implies a 200 ms total track time. As
the MFM cells have a length of 4 µsec this gives a total of about 50000 cells and therefore
about 6250 bytes per track. The table below indicates possible values of the gaps for tracks
with 9, 10, and 11 sectors.

Name 9 Sectors: # bytes 10 Sectors: # bytes 11 Sectors: # bytes

Gap 1 Index postamble 60 60 10

Gap 2 ID preamble 12+3 12+3 3+3

Gap 3a ID postamble 22 22 22

Gap 3b Data preamble 12+3 12+3 12+3

Gap 4 Data postamble 40 40 1

Total Gap 2-4 92 92 44

Record Length 614 614 566

Gap 5 Index preamble 664 50 20

Total Track 6250 6250 6250

Respecting all the minimum value on an 11 sectors / track gives a length of:
 L = Min Gap 1 + (11 x Min Record Length) + Min Gap 5 = 32 + 6534 + 16 = 6582

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 26 / 77

(which is about 332 bytes above max track length). Therefore we need to decrease each
sector by about 32 bytes in order to be able to write such a track. For example the last
column of the table above shows values as used by Superformat v2.2 program for 11
sectors/track (values analyzed with a Discovery Cartridge).

As you can see the track is formatted with a Gap 2 reduced to 6 and Gap 4 reduced to 1!
These values do not respect the minimum specified by the WD1772 datasheet but they make
sense as it is mandatory to let enough time to the FDC between the ID block and the
corresponding DATA block which implies that Gap 3a & 3b should not be shortened. The
reduction of Gap 4 & 2 to only 7 bytes between a Data Field and the next ID Field does not
let enough time to the FDC to read the next sector on the fly but this is acceptable as this
sector can be read on the next rotation of the FD.

This has an obviously impact on performance that can be minimized by using sectors
interleaving. But it is somewhat dangerous to have such a short gap between the data and
the next ID because the writing of a Data Field need to be perfectly calibrated or it will collide
with the next ID block. This is why such a track is usually reported as ñread onlyò (as in DC
documentation) and is sometimes used as a protection mechanism.
Of course you have more chance to successfully write 11 sectors on the first track (the outer
one) than on the last track (the inner one) as the bit density gets higher in the latter case. It is
also important to have a floppy drive that have a stable and minimum rotation speed
deviation (i.e. RPM should not be more than 1% above).

4.1.2 Ȱ3ÔÁÎÄÁÒÄȱ ρςψ-256-512-1024 Bytes / Sector Format

The table below indicates standard (i.e. classical) gaps values for tracks with sectors of size
of 128, 256, 512, and 1024.

Name
29 sectors of
128 bytes

18 sectors of
256 bytes

9 Sectors of
512 bytes

5 Sectors of
1024 bytes

Gap 1 Index postamble 40 42 60 60

Gap 2 ID preamble 10+3 11+3 12+3 40+3

Gap 3a ID postamble 22 22 22 22

Gap 3b Data preamble 12+3 12+3 12+3 12+3

Gap 4 Data postamble 25 26 40 40

Total Gap 2-4 75 77 92 120

Record Length 213 343 614 1154

Gap 5 preamble 73 76 664 480

Total Track 6250 6250 6250 6250

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 27 / 77

4.2 WD1772 DPLL Input Circuitry

4.2.1 Description

This section provides basic information on the DPLL of the WD1772 and how the decoded
bits are entered into the FDC shift register. It does not describe the data separator which is
based on usage of an AM (Address Marks) detector to find a specific pattern in the shift
register (usually during gaps) described latter in this document.

This is a simplified block diagram of the input circuitry of the FDC:

DATA SHIFT

REGISTER

SYNC DETECTOR

PLL DATA

SEPARATOR

FDC COMMANDs

Flux

Reversals

CLOCK/DATA

DECODER

Outputs

The WD1772 uses a digital phase lock loop (DPLL) circuit for reading the input data
transmitted from FD media. Inspection windows are established that have duration
proportional to the frequency of arrival of the data, and start/stop times that can be adjusted
so that subsequent data bits will be received in the middle of the inspection windows. To
achieve this, the DPLL circuitry applies frequency and phase corrections that compensate
the input data frequency drift. This drifts are usually due to unsteadiness of the motor drive
speed (the frequency drift), and the migrations of the magnetic reversals area (the phase
drift). The DPLL used inside the WD1772, as well as many other FDC build in the 80s,
implements an algorithm described in the public US patent 4,870,844. The patent is rather
complex and in this section I will only highlight some of the most important aspects of the
DPLL algorithm that are useful to understand the behavior in the context of fuzzy bits,
long/short track, etc.

If you want to fully understand the behavior of the DPLL please refer to the patent. Note that
in order to provide precise results my Aufit, Analyze, KFAnalyze, and KFPanzer programs
fully implement the DPLL algorithm as described in the patent.

Typical MFM encoding

As we can see the nominal values for the possible reversals spacing in DD MFM (1MB
mode) are: 4µs, 6µs, or 8µs.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 28 / 77

Letôs first review a typical Double Density MFM data encoding:

1 1 0 0 0 1 10

4µs 6µs 6µs 8µs4µs

0 0 1 1 0 0 0 0

1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0

Clock Bits

Data Bits

Encoded bits

Flux Reversals

Read pulses

Timings

Inspection
windows

Magnetic
Domains

The data input circuit of the FDC ensures that the data pulses received are converted into
data bits and stored in the data shift register (DSR). For that matter the digital phase lock
loop defines inspection windows that repeat every 2µs (a half cell size). A one is input to the
shift register if a data pulse is received at any time during one inspection windows; otherwise
a zero is stored in the shift register as the value for the current bit.

The period of the inspection windows is gradually adjusted (expanded or shortened) to
compensate an eventual frequency shift affecting the input data transfer. This frequency
correction is computed based on the history of the location (relative to the inspection
window) of the last three flux reversals.

Ideally, individual pulses
should be located in the
middle of the inspection
windows. To achieve this,
the start and stop times of
the inspection windows are
adjusted to compensate for
deviation (from ideal) in
time of arrival of the most
recently detected data
pulse. This phase correction is done proportionally to the distance of the reversals with the
middle of the inspection window.

The proper ratio of phase and frequency correction provided in the loop is carefully balanced
so that the DPLL is fast settling but stable. A large amount of phase correction cause the
loop to settle faster but also make it more sensible to noise. On the other hand if too much
frequency correction is used, the loop can become unstable.

It is interesting to note that the DPLL as defined in the patent allow an input frequency
variation of up to 9%. This corroborates the actual measurement made with a WD1772 that
correctly interprets bits with a variation of at least 9 to 10 % for DD MFM (and about 100% for
SD FM!). Note that these values are well above the variation used by the Copylock and
Macrodos protection mechanisms (usually less than 5%) and therefore the data within this
kind of sector should be read correctly.

Data Input

Inspection Windows

before phase adjust

Inspection Windows

after phase adjust

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 29 / 77

4.2.2 WD1772 Detection of Fuzzy Border Bits

With the above information it is now easy to understand that if a bit reversals happens close
to the border of an inspection window (also called Ambiguous area) it will be detected into
the first or the next inspection window based on small variation of the drive rotation speed
between two read-sector commands and this will therefore result in pseudo random values
returned (fuzzy bits).

For example having a reversal 5µs apart from the previous one can be interpreted as a
reversal after 4µs or a reversal after 6µs based on small frequency fluctuation of the rotation
speed between two reads. One might argue that it is not possible to make sure that these
ñmarginal reversalsò will be positioned correctly due to the fact that the rotationôs speeds of
different drives are somewhat different and therefore precise reversals timing on a floppy
diskette cannot be guaranteed. But in practice this is where the frequency and phase
correction of the WD1772 DPLL comes into play. As explained above the inspection window
will have it size (i.e. frequency) and position corrected based on the input reversals stream
after reception of only a few reversals. Therefore the DPLL of the FDC automatically adjust
the frequency of inspection windows for any acceptable (about 10%) variation of drive speed
and adjust the phase so that a ñnormal reversalò will be perfectly in the middle of the
inspection window and a ñmarginal reversalò will be perfectly at the border of the inspection
window.

This also explains why, in most cases, ñfuzzy bitsò are used in ñcompensating pairò: for every
two subsequent fuzzy bits the first reversal is placed at one extreme (e.g. at the beginning) of
the inspection window and the ñcompensating reversalsò of the next fuzzy bit at the other
extreme (e.g. at the end) of the inspection window. By using this kind of ñcompensating bitsò
we guarantee that the frequency and the phase of the inspection windows are (almost) not
affected.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 30 / 77

4.3 WD1772 MFM track language
During the write track command (format) the WD1772 needs to be told to perform specific
actions as:
Â write special sync marks with invalid MFM encoding,
Â write special address marks that identifies the beginning of ID/Data fields, and
Â write the content of the CRC register.

Therefore a range of values from $F5 to $FF has been defined as having special meaning
(what I call WD1772 track language) for the FDC:

$00-$F4 Are not interpreted by the WD1772. This means that during all read or write
commands (including read/write track) nothing special is done on these MFM
bytes and are therefore transferred directly.

$F5 Â During read track, read sector, read address, write sector commands this
byte as no special meaning.

Â During a write track command this byte (unless escaped by a $F7 byte) is
written as an $A1 sync byte with partially missing clock bit ($4489) and
the FDC internal CRC register is preset to the value $CDB4.

$F6 Â During read track, read sector, read address, and write sector commands
this byte as no special meaning.

Â During a write track command this byte (unless escaped by a $F7 byte) is
written as a $C2 sync byte with partially missing clock bit ($5224).

$F7 Â During read track, read sector, read address, and write sector commands
this byte as no special meaning.

Â During a write track command this byte (unless escaped by a $F7 byte)
forces the FDC to write the content of the CRC register. Any byte placed
after a $F7 byte is not interpreted (escaped). In other word bytes $F5
through $F7 are treated as normal bytes when placed after a $F7 byte.

$F8, $F9 Deleted Data Address Mark (DDAM) ï Normally $F8
Â During a read track, read address, write track, and write sector command

this byte as no special meaning.
Â During a read sector command if this byte is located after three $A1 sync

marks it indicates the start of the sector ñdeleted data fieldò. The FDC
sync mark detector is switched off after reception of this byte.

$FA, $FB Data Address Mark (DAM) ï Normally $FB
Â During a read track, read address, write track, and write sector command

this byte as no special meaning.
Â During a read sector command if this byte is located after three $A1 sync

marks it indicates the start of the sector ñdata fieldò. The FDC sync mark
detector is switched off after reception of this byte.

$FC-$FF ID Address Mark (IAM) ï Normally $FE
Â During a read track, read sector, write track, and write sector command

this byte as no special meaning.
Â During a read address command if this byte is located after three $A1

sync marks it indicates the start of the sector ñID fieldò. The FDC sync
mark detector is switched off after reception of this byte.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 31 / 77

4.4 WD1772 Synchronization (sync marks detection)
With MFM encoding a clock is only added for two consecutive 0 data bits and therefore it is
not possible to directly differentiate between clock and data bits on arbitrary sequence of bits.
At the beginning of a track the controller don't know where the byte boundaries are located
and so usually begins in the middle of a byte to read. The content of the track appears to be
shifted by some bits and actually the first few bytes (usually two) have nothing to do with the
true content of the track. This is also due to the fact that the DPLL is not yet synchronized.

There is a long string of zero's sequence encoded at the beginning of each ID and DATA
field. This sequence provides to the DPLL enough time to adjust the frequency and center
the inspection window. This is especially important for the DATA field because a Write splice
occurs when the read/ write head re-write a data field. The slight variations in the rotational
speeds cause the first flux change to occur in different positions for each write operation and
therefore the DPLL needs to adjust to this new frequency/position. But this sequence is not
really part of the synchronization.

It is only after receiving a synchronization mark $A1 or $C2 with partially missing clock bit
that the controller reads the bytes with the correct byte boundary. These 2 special bytes with
partially missing clock bits are called Sync Marks. In practice a sector ID or DATA field starts
with a sequence of 3 consecutive Sync Marks followed by an Address Mark5 (IAM, DAM, or
DDAM) as described in the track format language.

It is interesting to note that the first synchronization byte in a sequence of three $A1 sync
marks is always read incorrectly by the WD1772. The first synchronization byte is
inaccurately decoded as a $C2, a $14, or even sometimes a $0A byte. If the controller is
incorrectly shifted by a half bit (indicated by the fact that a sequence of $00 bytes is read as
$FF bytes) the data and clock pulses are swapped.

The following table detail the usage of the Sync marks by the WD1772

$A1 Sync Mark with missing clock bit between bit 4 and 56 ($4489)
Â This byte is used to synchronize (differentiate clock & data bit) the FDC

on bytes boundary.
Â $A1 sync mark detection is active at all time during a read track

command.
Â $A1 sync mark detection is deactivated after reception of 3x$A1 followed

by an IAM during a read address command.
Â $A1 sync mark detection is deactivated after reception of 3x$A1 followed

by a DAM/DDAM during a read sector command.

$C2 Sync Mark with missing clock bit between bit 3 and 4 ($5224)
Â This byte is used to synchronize the FDC on byte boundary.
Â $C2 sync mark detection is active at all-time only during a read track

command but not active during a read address or read sector command.

Note that neither the $4489 nor the $5224 encoding violates the 1,3 RLL rules (sequence
of 4 consecutive 0) and therefore this is why it is possible to find in a bit stream some
sequences that are similar to the $C2 synch mark. This is known as false sync mark
detection problem during a read track command and it is detailed in the next section.

5 For the address marks characters between $F8 and $FF the least significant bit is always
ignored by the WD1772 and therefore : $F8=$F9, FA=FB, FC=FD, $FE = $FF

6 The bits order is from MSB to LSB (the way they are sent) with first bit being numbered 0.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 32 / 77

4.5 False sync mark detection
As mentioned above the sync mark detection is enabled at all-time during the read track
command. The biggest problem is that synchronization is done not only on the $A1 and $C2
sync marks (with partially missing clock bit), but also on specific sequence of bits.

If you remember the normal id/data field preamble is a sequence of $00 (usually 12) followed
by 3 x $A1 sync marks. When a $00 byte (1010101010101010) is placed in front of an $A1
sync mark (0100010010001001) it results in a false $C2 sync mark (0101001000100100)
detection:
 10101010101 01010 01000100100 01001 $00+$A1 (S M)

 0101001000100100 $C2(SM)

This explain why the id/data preamble is detected as $14 $A1 $A1 or $C2 $A1 $A1

More generally the WD1772 is resynchronized whenever the following combination of 9 bits
ñ000101001ò appears in a bit stream. This can happen anywhere as the with the following
byte combinations:

¶ $29 and previous byte even (i.e. LSB set to 0)

¶ $52 or $53 and previous byte divisible by 4 (i.e. the two LSB set to 0)

¶ $A4-$A7 and previous bytes divisible by 8 (i.e. the three LSB set to 0)

¶ $14 and the following byte >= 128 (i.e. MSB set to 1)

¶ $0A, $8A and following byte with bit 7 cleared and bit 6 set (e.g. $43)

¶ $05,$45, $85, $C5 and following byte with bits 7, 6 cleared and bit 5 set (i.e. $21)

Non only the controller synchronizes to the presented sequence (i.e. $29), but it stays
incorrectly synchronized and therefore all the following bytes are shifted by multiple of "half
bit", which results in mix-up of data and clock pulses, and so the decoded bytes are totally
unrecognizable.

This error occurs everywhere on track 41. The value 41 is $29 in hexadecimal and therefore
all the address fields of these tracks are read incorrectly as well as the bytes following this
incorrectly decoded header.

False sync marks detection problem can be used for protection as explained in the document
Copy me, I want to travel by Claus Brod.

4.6 Overlapping Sync Mark
It is possible to find in the input stream some sequences of bits that contains overlapping
sync marks. We have 4 possible combinations of overlapping sync mark:
Ï $A1-$A1
Ï $C2-$A1
Ï $A1-$C2
Ï $C2-$C2

4.6.1 Overlapping $4489 -$4489 ($A1-$A1)

We take the $4489 pattern and we try to find how it can overlap another $4489 pattern. We
find two following two cases:
0100010010001001

 0100010010001001

and
0100010010001001

 0100010010001001

http://info-coach.fr/atari/hardware/_fd-hard/cb-copy-me.pdf

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 33 / 77

4.6.2 Overlapping $5224-$4489 ($C2-$A1)

We take the $4489 pattern and we try to find how it can overlap a $5224 pattern. We find the
following two cases:
0101001000100100

 010001001 0001001

and
0101001000100100

 0100010010001001

4.6.3 Overlapping $4489-$5224 ($A1-$C2)

We take the $5224 pattern and we try to find how it can overlap a $4489 pattern. We find
only one possible case:
0100010010001001

 0101001000100100

4.6.4 Overlapping $5224-$5224 ($C2-$C2)

If we take two $5224 pattern and we try to find how they can overlap. We can see that this is
not possible.

4.6.5 Invalid Sync sequence

A ñnormalò sync sequence is composed of three $4489 sync mark character ($A1 with
missing clock) used in front of an IAM. Any other sequence of sync marks should be
considered as a non-normal sequence that I refer as an invalid sync sequence. You will find
in this document several places where the sync marks $4489 or $5224 characters are used
for special usage.

It is interesting to note that in order to be read correctly an ID field or a DATA field must be
preceded by exactly by 3 x $4489 sync marks. For example if the sync sequence is
composed of two or four sync marks the ID field is not detected by the WD 1772.

However there is a special sequence that can be used instead of the normal 3 x $4489 sync
mark sequence: 7 x $4489.

This works because the following happen in the WD1772:
Â After reception of the first 3 x $4489 the FDC is ready waiting to get an IAM
Â At reception of the $4489 character the FDC detect a false sync sequence because it is

not an IAM. Therefore the fourth $4489 is discarded and the FDC return in sync
sequence search with the sync detector kept active.

Â The next 3 sync marks are detected correctly as if they were a new sequence of 3 sync
mark (even though they are sync marks 5, 6, and 7).

Â At the reception of the IAM the sync detector in the FDC is de-activated and the sector is
read normally.

Note that should also work for a sync sequence where we add a multiple of 4 x $4489 sync
character in front of the normal sync sequence (i.e. 11, 15, 19é).

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 34 / 77

4.7 WD1772 Bug in Read/Write Track commands
When you read a normal track you expect to get a number of bytes around 6250 bytes and
on a slow track you may get may be up to 6600 byte. But under certain circumstances you
get much more, in fact you might even get an almost infinite number of bytes.

How is this possible and when does it happen?

Apparently this happen when reading a track that have sync mark placed ñover the index
pulseò. Here is the explanation that I am aware of:
Ï Normally during read track command the FDC start on a first index pulse signal and

stops when it receive the next index pulse signal but if the FDC is busy processing a
sync byte then the index pulse is no longer recognized.

So a read track on this kind of track (i.e. with sync mark - $4489 or $5224 - over index)
sometimes the FDC does not properly detect the index pulse and therefore lots of extra bytes
are send to the DMA until it overflows. It seems that this also happen during the write track
command when you provide a sequence of $F5 or $F6 when reaching the index.

Therefore a program that reads track should be able to handle this problem for example in
Panzer during a read track command I set the number of DMA count to 40 (40*512 = 20480)
and reserved a buffer large enough to accommodate all these bytes.

Note that this does not happen systematically (probably due to rotation speed variation) so
you can read the same track correctly several times and get this problem at other times.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 35 / 77

4.8 WD1772 CRC Information

4.8.1 CRC Computation

The WD1772 documentation indicates that the CRC uses the CCITT CRC16 polynomial and
that the CRC register is preset to all ones ($FFFF) during the write track command when
the first $F7 byte is received (see WD1772 MFM track format language). This results to a
CRC value of $CDB4 at the end of a normal sync sequence of 3 x $4489.

In practice, probably for practical reasons, the CRC register is preset to $CDB4 each time a
$F5 character is received. This can be verified by writing a sequence with more or less sync
bytes than the normal three sync marks sequence (remember that you wonôt be able to read
the corresponding sectors) and looking at the CRC result. Whatever is the number of $F5
sync marks written the CRC is always reset to $CDB4 by the last sync.

For example if you use the sequence $F5 $F7 you will see that the WD1772 writes the two
bytes $CDB4 (content of the CRC register) after the sync character.

No other character (including $C2 sync mark) presets the CRC to a predefined value.

It is interesting to note that any byte placed after a $F7 is transmitted unchanged (escaped)
by the WD1772. For example with the sequence $F7 $F5 the FDC will write two CRC bytes
followed by the $F5 byte. A sequence of repeating $F7 is sometime used in protection.

4.8.2 Playing with the CRC

We have seen that some protections are based on writing on purpose bad CRC in the ID or
DATA fields. Usually the checksum of an address or data field is calculated by the controller
but you can bypass this behavior and writes your own checksums to create errors. This is
often not detected by copy programs.

Letôs first create a broken checksum in an address field. This is relatively simple, because
address fields are written by using a write track command sequence like the following:

F5 F5 F5 FE 00 00 01 02 F7

This sequence of bytes writes an address field with track and head number 0 sector number
1 and size 2. The byte $F7 forces the controller to write the calculated checksum on the
floppy disk.

If we replace the $F7 byte by two $00 bytes with the following sequence:
F5 F5 F5 FE 00 00 01 02 00 00

This address field is read with a checksum error and the sector is unreadable7.

You can try the following sequence:
F5 F5 F5 FE F5 00 01 02 F7

The Sync byte $F5 within the address field generates a checksum error in the header to
read; because when writing the WD1772 calculates the checksum of the byte sequence

FE F5 00 01 02

But it is read:
FE A1 00 01 02

The checksums of these two bytes sequences are of course different and therefore you get a
CRC error which implies that you no longer can read the data field.

7 Remember that it is possible to read an id field with a wrong CRC using a read address
command, but it is not possible to read a sector with a CRC error in its header using a read
sector command.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 36 / 77

However it is simple to compute the checksum of the FE A1 00 01 02 sequence ($56AD) and
replace the $F7 byte by these bytes during format.

F5 F5 F5 FE F5 00 01 02 56 AD

Another interesting sequence is to write a $F7 sync byte in an address field and not get a
checksum error. You know that when writing consecutively two $F7 bytes on the disk the
second one is escaped. The first is interpreted as a request to write the checksum register
content and the one is explicitly written as $F7. For example with the following sequence:

F5 F5 F5 FE F7 F7 02 F7

The address here is specified with only three bytes ($F7 $F7 $02) because the first $F7
bytes when writing is translated into two CRC bytes. The resulting checksum is correct.

The address field is read as:
14 A1 A1 FE B2 30 F7 02 AA 14

The track number is read $B2 (178), the head is $30 (48), and the sector number is $F7
(247) than you cannot usually write on a floppy disk with the WD1772. A copy program trying
to write this header just as read will be generated a sector header like this:

14 A1 A1 FE B2 30 00 00

And that is of course quite different from the original.

By the way, you can see the very nice reproductive properties of the CRC Checksum. The
sequence starting with the byte, $FE, creates the checksum of $B230 (with the CRC register
initialized to $CDB4 after the last $A1) and if you send this checksum right back to the CRC
register the result is 0. This is how the controller works when it reads a data or address fields
and the associated checksum. If the CRC register contains zero the data or address field is
correct.

Similarly, you can also write a $F5 or a$F6 byte in an address field. Because after a $F7 byte
is written the following byte is unchanged (escaped).The sequence

F5 F5 F5 FE F7 F5 02 F7

is read
14 A1 A1 FE B2 30 F5. 02

In a DATA field, a deliberate checksum error is more difficult to produce. If the data field of
the sector to write contains no bytes over $F4, we can directly write these bytes during
formatting (write track command) and like for the ID field write a fake checksum at the end of
the sector (for example 00 00) to generate the CRC error (instead of using the normal $F7
that would generate the correct two bytes checksum).

But if we need to write the data using a write sector command (so that any byte including
bytes over $F4 can be correctly written) the correct CRC will be written automatically at the
end of the command.

In that case, to generate a CRC error, it is possible to use the following procedure:
Â First step: format the track with correct checksum and empty data in the sector

concerned.
Â Second step: write the sector and stop the FDC command execution just before it writes

the checksum. The result is therefore a sector with new data but old checksum. Stopping
precisely the command before writing the checksum is difficult.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 37 / 77

4.9 No Flux Area on Disk
There has been a lot of debate around the so called No Flux Area on disk. This is a
protection's mechanism used on some floppies that results in absolutely no flux transitions
coming from the drive read circuitry for a long period of time (usually several milliseconds).

For some times it has been thought that this was obtained by doing a so called "strong
erasure" of areas of a disk. However this would be very difficult to create and it would not
produce the wanted effect:

Â For one this canôt be done with the normal recording head/circuitry of a floppy drive
and therefore it would require to use modified drives.

Â Secondly if such areas, with no magnetic flux transitions, existed on the floppy disk it
would cause the ACG of the read chain to be set to its maximum amplification value
and this would result in picking up noise from the head resulting in reading random flux
transitions which is not the case.

The following explanation of the No Flux Area has first been described by István Fabián
from SPS (see the reference section) and can be summarize as follow:

Bit-shift occurs on any NRZ recorded medium as a normal
consequence from read/write head operation. Data are written
when the read/write head generates a flux change in the gap of
the head, which causes a change in magnetization of the
medium oxide. In reading, a current is induced into the
read/write head when a flux transition on the medium is
encountered. The current change is not instantaneous, since it
takes a finite time to build up to peak and then to return to zero.
If flux transitions are close together, the current buildup after
one flux transition then declines, but it does not have time to reach zero before the second
transition begins. Consequently current pulses are summed by the read/write head, which
causes the peaks to be shifted. A No Flux Area is created by writing a large number of flux
transitions close enough (i.e. at a relatively high frequency). This will result in having the read
current never returning to zero and consequently this will result as no data pulse generated
on the read channel. Note that in this case the ACG is set to a normal amplification as the
input circuitry receives high frequency flux transitions even if no data is coming out of the
read channel.

4.9.1 Checking NFA with the WD1772

The next challenge is to check an NFA with a standard WD1772 Floppy disk controller?
Normally the WD1772 FDC can only read the data bits. Therefore a sector with NFA is read
as a sector filled of 0x00 bytes but it is normally not possible to check that the clock bits are
also 0x00bytes. To be able to check the clock bits the NFA protection uses an interesting
trick. Another sector is written within the first sector (SWS) that contains the NFA and this
sector contains 3 sync marks shifted by one bit cell. Therefore when you read the data for
this second sector you are actually reading the clock data from the first one!

Here is a dump made with KFAnalyze of the game Turrican where the data bytes are
displayed on the first line of the dump, and the clock bytes are displayed on the second line.

Detail buffer content for sector 0 with 1027 bytes

= DATA ID=0 1027 bytes @87082 us length=32637.85 CRC BAD CLK=3.97 TMV=0 BRD= 1 DOI=0

 *** Fuzzy Sector *** starting at byte position 217

 0000 87082 4000 fb 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 7f ff ff ff ff ff ff ff ff ff ff ff ff ff ff . •..............

 0010 87596 3968 00 a1 a1 a1 fe 07 00 10 03 bb 21 4e 4e 4e 4e 4e !NNNNN

 ff 0a 0a 0a 00 f8 7f e7 fc 00 4e 10 90 90 90 90 •...N.....

 0020 88103 3968 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e 4e NNNNNNNNNNNNNNNN

 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

 0030 88614 3968 4e ff ff ff ff ff ff ff ff ff ff ff fe 14 14 14 N...............

 90 00 00 00 00 00 00 00 00 00 00 00 00 a1 a1 a1

 0040 89124 4000 00 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 fb 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 38 / 77

We can see inside data block (starting with 0xFB DAM) the presence of 3 sync character
followed by the ID block for sector 16 (sector within sector). However if we look further down
we do not see the sync marks for the corresponding data block. Instead we see the presence
of 3 bytes with value $14 followed by a byte $00 and several bytes 0xFF. But if we look at the
line below (that contains the clock bytes) we can see that the 3 x $A1 sync bytes are in fact
located in the ñclockò bytes. During the read command the sync mark detector of the
WD1772 will take care of shifting the input stream by a half cell to correctly read the sector
16 data.

The end result is that you can read the ñdataò bytes of the NFA by reading sector 0, and you
can read the ñclockò bytes of the NFA by reading sector 16 (sector within sector).

As you can see
around 90 ms
inside the track we
have a region
without any
transition for a
period of 4330µs.

If we zoom close to
the NFA we see
that we have a first
sector, and inside
this sector we have
a second sector
(sws) and that the
data segments of
these sectors both
includes the NFA.

 Note: Inter-GAP in Green, ID in yellow, Intra-Gap in light green, Data in blue.

4.9.2 Special case of No Flux Area over index

It is possible to have the No Flux Area located over the Index pulse. This is a hard to handle
case for programs that reads the flux transitions produced by devices like Kryoflux and
SuperCard Pro.

It is interesting to note that, for obvious reasons, in (almost) all cases the index pulse and the
data pulse are not synchronized. In order to correctly interpret the information sampled, it is
therefore necessary to know the position of the index pulses relative to the data pulse.

In ñnormalò cases (i.e. for data pulse in range 4 to 8 Õs) it is acceptable to ignore the position
of the index relative to the current flux transition, but in case where a no flux area is located
over the index it is mandatory to get and interpret correctly this information.

 Atari Floppy Disk Copy Protection

Copyleft Jean Louis-Guérin (DrCoolZic) ï Rev 1.4 - June 24, 2015 Page 39 / 77

Here is a typical case of an NFA over index. As we can see we have a huge area without flux
transition located just above the index. In the figure we show three important values: one is
the ñNFA flux valueò (typically around 4 to 5 ms.), the pre-Index time value, and the post-
Index time value (only 2 of these three values are required as the third can be easily
computed from the other two).

Data Signal

preIndex

 NFA fluxValue

preIndex

Index Signal

 NFA fluxValue

RevolutionTime

postIndex postIndex

For a practical example I use the Turrican game. On my version track 8 has a NFA of about
4.3 ms located on top of the index. The pre-index value is about 3 ms and therefore the post-
index is about 1.3 ms.

Here is the correct display of this track by Aufit.

The Kryoflux raw stream format provides the NFA value as well as the pre-index timing (see
my documentation KryoFlux Stream File Documentation). The only way to be able to provide
this kind information is to start to sample flux before the index as the Kryoflux device does.

Unfortunately the SCP format does not provide any information about the positioning of the
index pulse relative to data pulse. I have requested this feature several times on Atari-Forum
as well as on the SCP forum without success. In SCP device:
Â The sampling of transitions always starts at the index pulse. It is therefore not be possible

to detect the index position for the transition happening before the index.
Â The results is the No Flux Area is just not transmitted on the first rotation. On the second

revolution the NFA is passed as if it was the first transition.

