

Atari ST

FD/HD Programming

Jean Louis-Guerin (DrCoolZic)

V1.1 – September 2013

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 2/35

Table of Content
Table of Content .. 2
Introduction.. 3
Description of the Atari Disk Drive Hardware Interface .. 3

Memory / DC Data Transfers .. 4
Read Transfers from FDC to Memory .. 4
Write Transfers from Memory to FDC .. 5

Transfer Chronogram .. 5
DMA Programming .. 6

General Atari ST DMA Connection Block Diagram .. 6
DMA Registers Address Map .. 7
DMA Registers detail .. 7
DMA Block Diagram .. 9
DMA Mode Control Register Values for the FDC ... 9
DMA Mode Control Register Values for the HDC ... 9
DMA Programming Tips and idiosyncrasies: .. 10

PSG Programming .. 12
PSG Registers Address Map .. 12
PSG Registers detail ... 12
PSG Programming Tips: ... 13

MFP 68901 Programming ... 14
MFP Registers Address Map .. 14
MFP Registers detail ... 14

FDC WD1772 Programming.. 16
Accessing FDC Registers ... 16
FDC Registers detail ... 16
FDC General Disk Read Operations ... 16
FDC General Disk Write Operation ... 17
FDC Command Summary ... 17

Flag Summary .. 18
FDC Type I Commands .. 19

Restore (Seek Track 0) .. 20
Seek .. 20

FDC Type II Commands ... 20
Read Sector .. 20
Write Sector .. 21

FDC Type III Commands .. 23
Read Address ... 23
Read Track ... 23
Write Track Formatting the Disk ... 23

FDC Type IV Commands .. 25
Status Register .. 26

Status Register Description .. 26
Status Register Summary ... 27

Floppy Disk Programming .. 28
General information / Tips ... 28
Typical Floppy Disk Operations .. 29

Enter Supervisor mode ... 29
Drive Select .. 29
Seek to Track .. 29
Multiple sectors read .. 30
Multiple sectors write .. 31
Read Address ... 32
Read Track ... 33
Write Track ... 33
Measurement of FDC bytes time-width .. 34

References ... 35
Revision .. 35

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 3/35

Introduction
The goal of this document is to provide the information necessary to write programs to access directly, at the
hardware level, the Atari ST hard disk drives and floppy disk drives1. Therefore I do not cover any of the
BIOS/XBIOS and GEMDOS calls as I am bypassing completely the TOS environment. I first describe the
Atari hardware involved in connecting disk drives, then I look at the programming of the Atari chips involved,
and finally I provide a detail description of the steps required to access floppy drives and hard drives.

Description of the Atari Disk Drive Hardware Interface
Accessing of Atari disk drives involves many chips. Mainly: the DMA, the MMU, the Glue, the FDC, the MFP,
and the PSG chips. The following diagram shows a simplified view of the Atari ST architecture:

As we can see the Atari ST uses a WD1772 FDC controller to interface the floppy drives and hard disk
controllers (located outside of the Atari) to access hard drives. In the Atari system architecture the FDC/HDC
data and address busses are connected to a private bus locates behind the DMA controller. In other word
the DMA seats between the processor bus and the FDC/HDC. This allows the DMA controller to perform
automatic transfer between the FDC, or an external Hard Disk Controller, and the memory. But this also
implies that all accesses to the FDC/HDC registers have to be done through the DMA controller. The floppy
drives controller is also connected to three bits of the output Port A of the PSG (YM2149) to control the
selection of the drives and the side. The hard disk controller is connected to the Atari through the DMA
connector. The interrupt request of the FDC/HCD is connected to an input of the MFP (68901) general
purpose I/O port (GPIO). This allows checking when an FDC/HDC command is terminated by either polling
this input or by triggering an interrupt.

1 Currently only FD is completely covered. HD information will be completed in upcoming versions.

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 4/35

The first schematic on the left shows the DMA and its
connection to the FDC and the DMA/ACSI external Hard Disk
interface. We can see that the DMA private data buss (CD0-7)
goes to the FDC controller as well as to the ACSI/DMA 19
pins connector. Several control signal are tranferred directly to
the DMA. The FDC interrupt is “ored” with the external HD
interrupt resulting to a signal I5 that is connected to bit 5 of
the MFP general purpose interface.

The FDC and DMA chips both receive an 8 MHz system clock
which is used by their internal micro-machines.

The second schematic on the right shows the FDC controller which is
connected to the Floppy drives connector.

Note the three signals coming from the PSG chip and the interrupt and
DMA request going to the MFP & DMA chips.

The last schematics on the left shows the connection of the PSG
(sound chip) to the low asserted DRIVE0*, DRIVE1*, SIDE0* signals of
the FDC connector.

Memory / DC Data Transfers

Read Transfers from FDC to Memory

This is a short presentation of the mechanisms involved in transferring bytes from the FDC to the memory
through the DMA (e.g. when executing a read track). The following description is for the FDC but we will see
later that the same principles apply to a HDC.

We first have to reset the DMA, set it to read transfer mode, fill the buffer address register, and fill the byte
count register. The buffer address must point to a memory big enough to contain all the data to be read from
the disk controller (e.g. about 6600 bytes in case of a read track from a floppy drive), and the count should
indicate the number of 512 bytes chunks that the DMA will have to transfer (for a floppy read track we can
use a large number like 20).

Then we have to send the necessary data to the FDC registers to start the execution of a read command
(e.g. for a read track we have to fill the track register and send the read track command). During execution
of the read command, as soon as an 8 bits byte is assembled in the FDC, a request is made to the DMA to
start a fetch cycle. Internally the DMA has two 16 bytes FIFOs that are used alternatively. This feature
allows the DMA to continue to receive bytes from the FDC/HDC controller while waiting for the processor to
read the other FIFO. When a FIFO is full a bus request is made to the 68000 and when granted, the FIFO is
transferred in 16 bits word to the memory. This continues until all bytes to be read have been transferred.

At the end of the command the FDC will raise an interrupt to signal the end of the command and we will
have to check that the command has terminated properly.

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 5/35

Write Transfers from Memory to FDC
This is a short presentation of the mechanisms involved for transferring bytes from the memory to the FDC
through the DMA controller (e.g. writing a track). Same principle would apply to transfer with a HDC.

We first have to reset the DMA, set it to write transfer mode, fill the buffer address register, and fill the byte
count register. The buffer address must point to the memory that contains the data to write to the FDC (e.g.
about 6600 bytes in case of a write track), and the count should indicate the number of 512 bytes chunks
that the DMA will have to transfer (for a write track we can use a large number like 20). Internally the DMA
has two 16 bytes FIFOs that are used alternatively. This feature allows the DMA to continue to write bytes to
the FDC/HDC controller from one FIFO while waiting for the processor to refill the other FIFO. When a FIFO
is empty a bus request is made to the 68000 and when granted, the FIFO is filled from memory at the
address pointed by the DMA address counter register. It is interesting to note that when the DMA is in write
mode, the two internal FIFOS are filled immediately after the Count Register is written without waiting for the
commands to be sent to the FDC controller.

We then have to send the appropriate data to the FDC registers to execute the command (e.g. for a write
track we have to fill the track register and send the write track command). The FDC request bytes as
needed to the DMA which will respond with write cycles. This continues until all bytes have been transferred.

At the end of the command the FDC will raise an interrupt to signal the end of the command and we will
have to check that the command has terminated properly.

Transfer Chronogram
The following chronogram shows the sequence of events when reading a track through the DMA. Note that
the events shown in diagram are not “scaled” correctly as the purpose of this diagram is just to show the
sequence of events.

IP

FDRQ

DMA Bus Transfer

DMA FDC Transfer

DMA Bus Request

DMA Address Reg

FIFO 1 Transfer

Store in FIFO 2

FIFO 2 Transfer

Address Change

Store in FIFO 1

After the FDC receives the read track command, it starts the motor (MO signal) and waits for the drive speed
to settle down. Once the drive as reached the correct speed it waits for the index pulse (IP signal) and then
starts to assemble bits from the drive. After a byte has been received it raises a FDRQ to indicate that one
byte is ready to be fetched. In response the DMA starts a fetch cycle to read the byte from the FDC data
register on the private bus that joins the two chips. This byte is stored in one of the two DMA’s FIFOs and in
response the floppy lower the FDRQ until the next byte is assembled. When the next byte is assembled a
new transfer takes place and this repeats until 16 bytes has been stored in one of the DMA FIFO. At this
point the DMA switch the reception of new bytes from the FDC to the other FIFO and issues a Bus request
to the 68000 to indicate that it wants to perform a DMA transfer. When the Bus request is granted by the
68000 the DMA take over the control of the system bus and transfer eight 16-bits words from the FIFO into
the memory pointed by its address register. At the end of the transfer the DMA release the bus to the
processor and increments its internal address register by 16.

Reading data from a HDC would result in a chronogram very similar using slightly different control signals.

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 6/35

DMA Programming
This section gives information on programming the DMA (Direct Memory Access) chip. Note that we
describe the DMA as one chip but in practice several chips are involved (DMA, MMU, and Glue for the STF
and DMA, MCU for STE) but this is not relevant from the programming point of view (see DMA Block
Diagram). When used in the context of the Atari ST and its high performance peripherals (FD, HD, CD …)
DMA refers to direct transfer of data between the peripheral device and the computer memory without the
direct intervention of the processor.

When the program running in your Atari ST computer requires data from a peripheral connected to the DMA
channel (directly or through the ACSI bus) or needs to send data to the device, the program must perform
the following basic steps:

1. Set a starting Atari ST Memory location for the DMA data to be sent to or received from.

2. Set a DMA count. This count is (at least) the integral number of 512 byte blocks to be sent to or
received from Atari ST memory.

3. Set the direction of data flow. This is accomplished by setting the DMA Read/Write bit to 0 for a read
from a peripheral device and 1 for a write to a device.

4. Write the command to be performed to the peripheral device and wait for command completion.

5. Select the DMA source (external or internal). DMA takes place here, with the peripheral indicating
completion.

6. Check the device status for an error. If no error occurred the data is now correctly placed in the
peripheral or Atari ST Memory (depending on whether you were sending it to, or receiving it from,
the peripheral).

General Atari ST DMA Connection Block Diagram
Following is a non-limitative list of Atari ST peripheral devices that use the DMA channel including the Atari
ST floppy disk controller (which is connected directly to the DMA channel): the Laser printer through its
APPC (Atari Page Printer Controller), the Hard Disk through its AHDI (Atari Hard Disk Interface), the CDAR
Audio/ROM CD Unit, and the Removable Hard Disk.

More recent peripheral include Satan or UltraSatan Disk interface.

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 7/35

DMA Registers Address Map
The DMA registers are mapped in memory of the Atari ST at the following address:

DMA Registers detail
$FF8604 R/W (16 bits) FDC Registers Access / DMA Sector Count Register:

► When bit 4 of the DMA mode register is zero a read or write access
to this word causes a read or write cycle on the DMA bus (referred
later as a DMA bus cycle). If bit 3 of the mode register is set the
Hard Disk is selected (HDCS*) otherwise, the Floppy Disk is
selected (FDCS*). The CR/W* signal is set according to the type of
the CPU access (R/W) and CA1; CA2 signals are set according to
bit 1 & 2 of the mode register. The DMA interface only uses 8 bits
when writing and therefore the upper byte is ignored and when
reading the 8 upper bits consistently reads 1.

► When bit 4 of the DMA mode register is one the internal sector
count register is selected (write only - trying to read this register
returns unpredictable value). This register stores the upper limit on
the number of 512-bytes blocks that can be transferred in a single
DMA operation. This sector count register is decrement by one
each time 512 bytes block has been transferred and when the
count reaches zero the DMA will stop to transfer data. Only the
lower 8 bits are used (value 1 to 255). Therefore up to 255*512
(130560) bytes can be transferred in one operation.

$FF8606 R (16 bits) DMA Status word:

Bit 0: DMA error status: 1 = no error; 0 = error
Bit 1: Sector count status: 0 if count has reached zero; 1 otherwise.
Bit 2: DQR Status: 1 if the DRQ signal is active; 0 otherwise.
Other bits are reserved and should be ignored.

$FF860D

$FF860B

$FF8604

$FF8609

$FF8606

FDC Access / Sector Count

DMA Mode(W) / Status(R)

DMA Address Counter High

DMA Address Counter Medium

DMA Address Counter LowR/W Byte

R/W Word

R/W Word

R/W Byte

R/W Byte

$FF8602 Reserved

$FF8600 Reserved

DMA registers address map

DMA

Error

Sector

Count

DRQ

State

DMA: 1=No Error, 0=Error

Sector Count: 0=null, 1=not null

FDC DRQ Signal State

012

Reading the DMA status register (Word)

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 8/35

$FF8606 W (16 bits) DMA Mode Control register:

Bit 0: not used, must be set to 0.
Bit 1: Control the CA1 output of the DMA chip during a DMA bus cycle. CA1

is connected to A0 of FDC and CA1 of the HD Interface port.
► For the HD interface this signal is used to signal the start of a new

command block. The start of a new command block happens when
this bit is clear (0) and a CS (Chip Select) occurs. For the rest of the
command this bit must be set (1).

Bit 2: Control the CA2 output during a DMA bus cycle. CA2 is connected to
A1 of FDC and is not used by the HD interface.

Bit 3: Select witch of the HDCS*/FDCS* chip-select outputs is low asserted
during the DMA bus cycle;
► 1 = the HDCS* chip-select will be asserted,
► 0 = the FDCS* chip-select will be asserted.

Bit 4: Sector count / Register select: decides whether the DMA internal sector
count register of the DMA or the HDC/HDC external registers are
accessed when reading or writing at address $FF8604.
► 1 = the DMA internal sector count register is selected (write only).

The sector count register sets the upper limit of 512 bytes blocks
that can be transferred at one time.

► 0 = the HDC-FDC external controller registers are accessed through
a read or write DMA bus cycle.

Bit 5: Reserved; must be set to zero.
Bit 6: Supposed to Enable/Disable DMA. When 1 the DMA is disabled; when

0 DMA is enabled. In fact this bit is not used by the DMA and can take
any value but it is a good practice to set it to zero.

Bit 7: FDC/HDC transfers acknowledge;
► 1 =the DRQ from the FDC is acknowledged.
► 0 = the DRQ from the HDC is acknowledged.

Bit 8: Write/Read DMA transfer direction;
► 1 = data are transferred from memory to controller (Write direction);
► 0 = data are transferred from controller to memory (Read direction).

 When this bit is toggled the DMA is reset. Resetting the controller
flushes the internal FIFO and clears the Sector Count Register. This
must be done before each DMA operation.

A0 Pin: 0=Low, 1=High

00
DMA

On/Off
FD/HD
ACK

FD/HD
Rd/Wr

Pin A0Pin A1
FD/HD

CS
FDC /
Sector

A1 Pin: 0=Low, 1=High

 CS: 0=FDCS*, 1=HDCS*

Reg: 0=FDC, 1=sector count

DMA: 0=On, 1=Off (not used)

ACK: 0=HDC , 1=FDC

FDC/HDC: 0=read, 1=write

1 023

45678

Writing the DMA mode register (Word)

$FF8609 R/W (8 bits) DMA Address Counter High byte:
The High byte of the DMA internal 24 bits address register.

$FF860b R/W (8 bits) DMA Address Counter Middle byte:
The Middle byte of the DMA internal 24 bits address register.

$FF860d R/W (8 bits) DMA Address Counter Low byte:
The Lower byte of the DMA internal 24 bits address register.

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 9/35

DMA Block Diagram
Atari did not provide a block diagram
of the DMA. Therefore I have created
this extremely simplified block diagram
of the DMA chip. The registers/FIFOs
are displayed in yellow and the
different multiplexers are shown in
blue.

Note that the DMA Address register is
in fact located in the MMU chip and
some control signals are located in the
Glue chip but they should be
considered logically as part of the
DMA device.

Obviously this diagram does not show
the correct and full control logic of the
DMA chip (for example CA1-CA2) but
it should help to understand how the
different flags of the control register
are used.

DMA Mode Control Register Values for the FDC
When programming the DMA mode register for use with the floppy disk controller the following values
should be used:

 For accessing the FDC: 0000 000D X000 0A1A00
 For accessing the Sector count register: 0000 000D X001 XX X 0

Where D2 sets the direction of the transfer (1=W, 0=R), A1 A0 are the two addresses bit used by the FDC
controller, and Xs are don’t care (it is usual to set them to 0). In practice writing the following values in the
mode register at address $FF8606 will result in accessing the following registers at address $FF8604:

DMA Mode register DMA in
Read mode

DMA in
Write Mode

FDC Register Control (W) / Status (R) $0080 $0180

FDC Track Register (R/W) $0082 $0182

FDC Sector Register (R/W) $0084 $0184

FDC Data Register (R/W) $0086 $0186

DMA Count Register (W)3 $0090 $0190

 For FDC DMA Transfer: 0000 000D 100X 0XX0

DMA Mode Control Register Values for the HDC
When programming the DMA mode register for use with the external hard disk controller the following values
should be used:

 For accessing the HDC: 0000 000D X000 1XA10
 For accessing the Sector count register: 0000 000D X001 XXX0
 For HDC DMA Transfer: 0000 000D 000X XXX0

Where D sets the direction transfer mode (1=W, 0=R), A1 is the CA1 address bit used by HDC controller,
and Xs are don’t care (it is usual to set them to 0).

2 The direction bit should not be toggled between accesses; otherwise it will reset the DMA.
3 DMA count register is Write Only

ADDRESS REGISTER

SECTOR COUNT

REGISTER

2 X FIFO

Dir ACK On 0 SCR CS CA2 CA1 0

MUX

MUX

MUX

STATUS REGISTER

RASxx / CASxx

D0-D15

A1-A21

MAD0-MAD9

CD0-CD7

FDRQ

HDRQ

HDCS*

FDCS*

CA2

CA1

BR

BG

MODE REGISTER

DMA BLOCK DIAGRAM

© JLG 2011

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 10/35

DMA Programming Tips and idiosyncrasies:
 The DMA Address Counter register must be loaded (written) in a Low, Mid, High order. Be sure to write

the Address Counter register before writing the Sector Count register as this will trigger the DMA
immediately.

 The DMA Address Counter register must be read in a High, Mid, Low order.
 The DMA address register is 24 bits long but in fact only 22 bits are used on STF/STE. Therefore

writing $41 at address $FF8609 is equivalent to writing $01.
 There are two eight-word FIFOs in the DMA chip which serves as read/write buffers.

► In read mode, when one of the FIFO is full (i.e. when 16 bytes has been transferred from the FDC
or HDC) the DMA chip performs a bus request to the 68000 and in return the processor will grant
the control of the bus to the DMA, the transfer to the memory is then done with 8 cycles then the
bus is released to the system. As the processor takes time to grant the bus and as transferring
data from FIFO to memory also takes time, the other FIFO is used for continuing the data transfer
with the FD/HD controllers. The FIFOs are not flushed automatically at the end of a transfer, and
therefore it is only possible to transfer data in multiples of 16 bytes. Be aware of this behavior, for
command that does not transfer data in multiple of 16 bytes like the read address command which
only transfer 6 bytes.

► In write mode, when one of the FIFO is empty (i.e. when 16 bytes has been transferred to the FDC
or HDC) the DMA chip performs a bus request to the 68000 and in return the processor will grant
the control of the bus to the DMA, the transfer from the memory is then done with 8 cycles then the
bus is released to the system. As the processor takes time to grant the bus and as transferring
data from memory to FIFO also takes time, the other FIFO is used for continuing the data transfer
with the FD/HD controllers. It is important to know that after the DMA has been set to write mode,
the transfer of data to the two FIFOs is triggered by writing a value to the sector count register. In
other word immediately after writing the DMA Sector Count Register the first 32 bytes from
memory are written into the internal FIFOs in preparation for transfer to the FDC on demand.

 Toggling the Read/Write transfer direction bit (bit 8) of the mode register clears the DMA controller
status register, flushes the two internal FIFOs, and clears the Sector Count Register. Therefore, when
accessing DMA/FDC registers, be careful not to toggle the transfer direction bit (the bit-8) otherwise this
would reset the DMA. You should reset the DMA controller before each DMA operation4.

 The DMA chip has no interrupt capability. Therefore the end-of-transfer interrupts are generated by the
controllers (the FDC & HDC interrupt outputs are logically OR’ed). These interrupts are connected to
the General Purpose I/O Port, bit 5 and are masked and vectored by the 68901 MFP chip, on interrupt
level 7. If you prefer to poll the status of the interrupt request line you can test the bit 5 of the MFP GPIP
data register (this is what is done by the current TOS software). For that matter just read a byte at
address $FFFA01 and mask it with $20; if the result is zero there is no interrupt.

 Turn off the floppy VBL check routine _flopvbl while using the FDC/DMA by setting the floppy lock
variable (flock at $43e) to $FF. This prevents the VBL routine to screw up the transfer by accessing the
DMA chip registers periodically. When the transfer is finished you have to reset the flock variable to 0
this will cause the _flopvbl routine to automatically deselect the drive for you once the FDC has shut off
the motor.

 If the DMA status word is polled during a DMA operation the transfer might be disrupted. Therefore
polls the Floppy Disk Controller interrupt using the MFP General Purpose I/O register to detect the
completion of a WD1772 FDC command. Do not poll the FDC Busy or DMA Sector Count zero status
bits of the DMA status register.

 Make sure you select the Sector Count Register mode (setting DMA mode register bit 4 = 1) before
setting the register count. Make sure you select the Controller Access mode (setting the DMA mode
register bit 4 = 0) before setting or reading any of the FDC registers.

 The DMA count register set the upper limit of 512 bytes blocks that can be transferred in a single DMA
operation. Therefore up to 127.5 Kbytes (255 * 512) can be transferred in a single DMA operation. The
lower limit for the sector count is 1 for any transfer of 512 bytes or less. Setting it to zero result in a
DMA error.

 The Atari Hardware documentation indicates that it is necessary to select the DMA status count register
before testing the DMA status however this is not necessary. Note that this is always done in the Atari
source code I have seen and it does not hurt…

 The sector count register is write only. Reading this register return unpredictable values.

4 The only exception is when you want to repeat a read operation to get more than 16 bytes of data to flush
the content of the FIFO.

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 11/35

 Writing the sector count register triggers the DMA operation. For that reason you must follow this
sequence: first load the address counter register, then reset the DMA, then set the transfer mode with
the control register, and finally trigger the DMA operation by writing to the sector counter register.

 When accessing DMA/FDC registers be careful not to toggle the transfer direction bit (the bit-8)
otherwise this resets the DMA. For example if you are in write mode use the value $180 to access the
FDC status register instead of the value $080 in read mode.

 Bit 6 of the DMA Mode Control register is supposed to enable/disable the DMA. However on STF/STe
this bit is ignored (i.e. writing $90 is equivalent to writing $D0).

 The Atari documentation mentions that it is necessary to write the DMA control register immediately
after you write the DMA data register. Otherwise it is possible to get a double strobe from the DMA chip.
In practice not following this recommendation seems to work fine. This might be necessary when using
the so-called Atari bad DMA chip? If you want to be safe you may want to follow this rule.

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 12/35

PSG Programming
This section gives information on programming the PSG (YM2149) chip in the context of accessing the
floppy drives through the FDC controller. The signals SELECT0*, SELECT1*, and SIDE0* of the FD
interface are connected to bits 0-2 of the PSG I/O port A.

PSG Registers Address Map
The PSG registers are mapped in memory of the Atari ST at the following address:

PSG Registers detail
$FF8800 W (8 bits) PSG Register Select:

The YM2149 has 16 internal registers. The number of the register you want to
access needs to be loaded in the PSG select register. The data read and write
will access this register until a new value is written to the select register. Note
that only the bottom 4 bits are used to select one of the 16 internal registers.
For accessing the I/O port A the value 14 must be loaded.

$FF8800 R (8 bits) PSG Read Data:
Read a byte from the selected register

$FF8802 W (8 bits) PSG Write Data:
Write a byte to the selected register.

The 3 lower bits of the register 14 (I/O Port A) are used by the floppy interface:

Bit 0: Side selection: 1 selects side 0, and 0 selects side 1 of a double sided
floppy diskette.

Bit 1: Drive 0 selection. When 0 drive 0 is selected.
Bit 2: Drive 1 selection. When 0 drive 1 is selected.

Reg 14

$FF8800

$FF8802

Register Select / Read data

Write Data

Port A

R/W Byte

R/W Byte

SIDE 0: 0=Side0, 1=Side1

Side 0StrobeGPOx Drive 0Drive 1RTSDTR

DRIVE 1: 0=select, 1 not sel.

RS232 RTS Signal

RS232 DTR Signal

Centronics Strobe

GP Output (monitor con.)

Reserved

1 023

4567

DRIVE 0: 0=select, 1 not sel.

PSG Port A bits

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 13/35

PSG Programming Tips:
 During access to the PSG data register (read or write), all the 68000 interrupts must be disabled.

Otherwise the floppy interrupt routine will deselect the drive again. If you are programming in C

language it is practical to use the Giaccess() routine (takes care of disabling interrupt) instead

of directly accessing the PSG register.

 Only one drive must be selected!

 Never leaves a drive selected when not used anymore. This might be harmful to your floppies.

 You should be careful before deselecting a drive. The FDC will automatically turn off the motor after
the 10 index pulse (10 * 200ms) if no command has been received during this period. However the
drive needs to be selected in order to the index pulse to be conveyed to the FDC. This implies that
you must wait for the motor to stop before deselecting the drive.

 As the I/O Port A is used for other things make sure you do not change the state of bits 3-7. For that
matter you have to read the current state of the Port A and only modify the three lower bits.

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 14/35

MFP 68901 Programming
This section gives information on programming the MFP (68901) chip in the context of accessing the floppy
drives through the FDC controller.

MFP Registers Address Map
The MFP registers are mapped in memory of the Atari ST at the following address

$FFFA01

$FFFA03

$FFFA07

$FFFA05

Vector Register

Interrupt Enable A

Data Direction

Active Edge Register

General Purpose I/O Int PortR/W Byte

R/W Byte

$FFFA09

$FFFA0B

$FFFA13

$FFFA0D

$FFFA11

R/W Byte

R/W Byte

R/W Byte

R/W Byte

R/W Byte

R/W Byte

R/W Byte

R/W Byte

R/W Byte

R/W Byte

R/W Byte

R/W Byte

R/W Byte

R/W Byte

Interrupt Pending A

Interrupt In Service A$FFFA0F

Interrupt Mask A

$FFFA17

$FFFA15

$FFFA1B

$FFFA19

Interrupt Enable B

Interrupt Pending B

Interrupt In Service B

Interrupt Mask B

Timer A Control

Timer B Control

$FFFA1D

$FFFA1F

Timer C&D Control

Timer A Data

$FFFA21

$FFFA23

$FFFA25

$FFFA27

$FFFA29

Timer B Data

Timer D Data

Timer C Data

Sync Character

USART Control

$FFFA2B

$FFFA2D

Receiver Status

Transmitter Status

$FFFA2F USART Data

R/W Byte

R/W Byte

R/W Byte

R/W Byte

R/W Byte

R/W Byte

R/W Byte

R/W Byte

The MFP is initialized by the TOS. The main usage of the MFP for floppy drive programming is to detect the
INTRQ from the FDC. This signal is input on bit 5 of the GPIO register.

By enabling the bit 7 of the Interrupt Enable B register it is possible to generate an interrupt (vector $11C).
But in most case it is easier just to poll the bit 5 of the GPIO to find out if an interrupt has been generated by
the FDC (bit 5 = 0)

Another possible usage of the MFP in the context of floppy programming is to use one of the 4 timers to
measure precise timing. This can be particularly useful to measure the exact time it takes to read a sector.
This information is useful to check for specific protection mechanism (i.e. Copylock, Macrodos, …). I
recommend using the timer A for that matter5. The timer must be programmed in delay mode with an
appropriate pre-scale (dividing by 10 is suggested) and the running value can be polled. It is also possible to
program the MFP so that an overflow of the timer generates an interrupt on vector $134 (bit 5 of the Interrupt
Enable A register).

MFP Registers detail
Here we will only look at the registers useful for the FDC programming.

5 Timer A is used in STE for the sound, but can be momentarily used. Remember to set the Timer A control
register back to the state it was before usage (save and restore).

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 15/35

$FFFA01 R/W (8 bits) GPIO General Purpose I/O Port
This is the data register for the 8 bit ports, where the data from the port bits are
send or read.

$FFFA19 R/W (8 bits) Timer A Control Register
Timer A is fed with the Centronics Busy signal. Timer A is normally not used
and can therefore be used to measure time (see Measurement of FDC bytes
width). The last 5 bits of the control register are used to determine the operating
mode of the timer. The bit 4 reset the timer and should be kept at zero and the
three low bits are programmed as follow:

Bits 3 - 0 Function

0000 Timer stop

0001 Delay Mode divide by 4

0010 Delay Mode divide by 10

0011 Delay Mode divide by 16

0100 Delay Mode divide by 50

0101 Delay Mode divide by 64

0110 Delay Mode divide by 100

0111 Delay Mode divide by 200

1000 Event count mode

$FFFA1F R/W (8 bits) Timer A Data Register
Read/Write the timer counter.

Centronics Busy

CBFDCRIMMD DCDCTSxKB

RS232 CTS

Reserved

KB/Midi Interrupt

FDC/HDC Interrupt

RS232 Ring Indicator

Monochrome Monitor Detect

1 023

4567

RS232 DCD

MFP GPIO bits

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 16/35

FDC WD1772 Programming
This section gives information on low level programming of the FDC (WD1772).

Accessing FDC Registers
As mentioned the FDC is not directly mapped in the 68000 address space, but is accessed through the DMA
chip (see DMA Registers Address Map). Like for the PSG this is therefore a two steps operation: first the
desired register is selected through the DMA, then the reads or writes transfer takes place. Reading or
writing to the selected register is done at address $FF8604.

Selecting one of the 4 FDC registers is done using the bit 1 and 2 of the DMA mode register (see DMA
Register detail for more information). The bit 4 of the DMA mode register must be set to 0, and the bit 8
(DMA transfer direction) must not be toggled (otherwise the DMA is reset). This leads to the following
values of the DMA mode register for accessing the FDC registers:

DMA Mode register DMA in
Read mode

DMA in
Write Mode

FDC Control / Status Register $080 $180

FDC Track Register $082 $182

FDC Sector Register $084 $184

FDC Data Register $086 $186

FDC Registers detail
Data Shift Register - This 8-bit register assembles serial data from the Read Data input (RD) during Read
operations and transfers serial data to the Write Data output during Write operations.

Data Register - This 8-bit register is used as a holding register during Disk Read and Write operations. In
disk Read operations, the assembled data byte is transferred in parallel to the Data Register from the Data
Shift Register. In Disk Write operations, information is transferred in parallel from the Data Register to the
Data Shift Register.

When executing the Seek Command, the Data Register holds the address of the desired Track position.
This register is loaded from the Data bus and gated onto the Data bus under processor control.

Track Register - This 8-bit register holds the track number of the current Read/Write head position. It is
incremented by one every time the head is stepped in and decremented by one when the head is stepped
out (towards track 00). The content of the register is compared with the recorded track number in the ID field
during disk Read, Write, and Verify operations. The Track Register can be loaded from or transferred to the
Data bus. This Register is not loaded when the device is busy.

Sector Register (SR) - This 8-bit register holds the address of the desired sector position. The contents of
the register are compared with the recorded sector number in the ID field during disk Read or Write
operations. The Sector Register contents can be loaded from or transferred to the Data bus. This register is
not loaded when the device is busy.

Command Register (CR) - This 8-bit register holds the command presently being executed. This register is
not loaded when the device is busy unless the new command is a force interrupt. The Command Register is
loaded from the Data bus, but not read onto the Data bus.

Status Register (STR) - This 8-bit register holds device Status information. The meaning of the Status bits
is a function of the type of command previously executed. This register is read onto the Data bus, but not
loaded from the Data bus.

FDC General Disk Read Operations
Sector lengths of 1281 256, 512 or 1024 are obtainable in either FM or MFM formats. For FM, DDEN* is
placed to logical 1. For MFM formats, DDEN* is placed to a logical 0. Sector lengths are determined at
format time by the fourth byte in the ID field.

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 17/35

SECTOR LENGTH TABLE

SECTOR LENGTH
FIELD (HEX)

NUMBER OF BYTES IN
SECTOR (DEC)

00 128

01 256

02 512

03 1024

The number of sectors per track for the WD1772 is from 1 to 240. The number of tracks for the WD1772 is 0
to 240.

FDC General Disk Write Operation
When writing on the diskette the WG output is activated, allowing current to flow into the Read/Write head.
As a precaution to erroneous writing the first data byte is loaded into the Data Register in response to a Data
Request from the device before the WG is activated.

Writing is inhibited when the WPRT* input is asserted, in which case any Write Command is immediately
terminated, an interrupt is generated and the Write Protect Status bit is set.

For Write operations, the WD1772 provides WG to enable a Write condition, and WD which consists of a
series of active high pulses. These pulses contain both Clock and Data information in FM and MFM. WD
provides the unique missing clock patterns for recording Address Marks.

On the WD1772, the Precomp Enable bit in Write Commands allows automatic Write pre-compensation to
take place. The outgoing Write Data stream is delayed or advanced from nominal by 125 nsec according to
the following table:

PATTERN MFM FM

X 1 1 0 Early N/A

X 0 1 I Late N/A

0 0 0 1 Early N/A

1 0 0 0 Late N/A

previous bit sent current bit
sending

next bit to
be sent

Pre-compensation is typically enabled on the inner most tracks where bit shifts usually occur and bit density
is at its maximum. READY is true for read/write operations (all Type II and III Command executions).

FDC Command Summary
The WD1772 accepts 11 commands6. Command words are only loaded in the Command Register when the
Busy Status bit is off (Status bit 0). The one exception is the Force Interrupt Command. Whenever a
command is being executed, the Busy Status bit is set. When a command is completed, an interrupt is
generated and the Busy Status bit is reset. The Status Register indicates whether the completed command
encountered an error .or was fault free. Commands are divided into four types and are summarized in the
following sections.

 BITS

TYPE COMMAND 7 6 5 4 3 2 1 0

I Restore 0 0 0 0 h v r1 r0

I Seek 0 0 0 1 h v r1 r0

II Read Sector 1 0 0 m h e 0 0

II Write Sector 1 0 1 m h e p a0

III Read Address 1 1 0 0 h e 0 0

III Read Track 1 1 0 1 h e 0 0

III Write Track 1 1 1 1 h e p 0

IV Force Interrupt 1 1 0 1 i3 i2 i1 i0

6 Only 8 of the 11 commands are presented here. The step / Step-in, and Step-out commands are not
presented.

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 18/35

Flag Summary7

h = Motor On Flag (Bit 3) e = 15ms Settling Delay (Bit 2)

0 Enable Spin-up Sequence 0 No Delay

1 Disable Spin-up Sequence 1 Add 15ms Delay

m = Multiple Sector Flag (Bit 4) p = Write Pre-compensation (Bit 1)

0 Single Sector 0 Unable Write Pre-comp

1 Multiple Sector 1 Disable Write Pre-comp

v = Verify Flag (Bit 2) a0 = Data Address Mark (Bit 0)

0 No Verify 0 Write Normal Data Mark

1 Verify on Destination Track 1 Write Deleted Data Mark

r1,r0 = Stepping Rate (Bits 1,0) i3,i2,i1,i0 Interrupt condition (Bits 3-0)

0,0 6 ms 1,0,0,0 Immediate Interrupt

0,1 12 ms 0,1,0,0 Interrupt on Index Pulse

1,0 2 ms 0,0,0,0 Terminate without interrupt

1,1 3 ms

In the Atari the MO output is directly connected to the drive and it is therefore mandatory to always enable
the spin-up sequence (h = 0). The settling delay option should not be used (e = 0), and the write pre-
compensation should always be used (p = 0). The stepping rate should normally be set to 3 ms (r0, r1 = 1,
1) but it is possible to set it to 2 ms (r0, r1 = 1, 0) however this gives less reliable results.

7 The u flag is not presented as it is only used by the step commands not presented here.

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 19/35

FDC Type I Commands
The Type I Commands Include the Restore and Seek Commands. Each of the Type I Commands contains a
rate field (r0, r1), which determines the stepping motor rate. As already mentioned in the Atari the stepping
rate should normally be set to 3 ms (r0, r1 = 1, 1). A 4 µsec (MFM) or 8 µsec (FM) pulse is provided as an
output to the drive. For every step pulse issued, the drive moves one track location in a direction determined
by the direction output. The chip steps the drive in the same direction it last stepped unless the command
changes the direction

The Direction signal is active high when stepping in and low when stepping
out. The Direction signal is valid 24 µsec before the first stepping pulse is
generated.

After the last directional step an additional 15 msec of head settling time
takes place if the Verify flag is set in Type I Commands. There is also a 15
msec head settling time if the e flag is set in any Type II or III Command. In
the Atari the e flag should be set to 0.

When a Seek, Step or Restore Command is executed, an optional
verification of Read/Write head position can be performed by setting bit 2 (v
= 1) in the command word to a logic 1. The verification operation begins at
the end of the 15 msec settling time after the head is loaded against the
media. The track number from the first encountered ID Field is compared
against the contents of the Track Register. If the track numbers compare
and the ID Field CRC is corrects the verify operation is complete and an
INTRQ is generated with no errors. If there is a match but not a valid CRC,
the CRC error status bit is set (Status Bit 3), and the next encountered ID
Field is read from the disk for the verification operation.

If v = 1 the WDI772 must find an ID Field with correct track number and
correct CRC within 5 revolutions of the media, or the seek error is set and
an INTRQ is generated. It v = 0, no verification is performed.

On the WD1772 all commands, except the Force Interrupt Command, are
programmed via the h Flag to delay for spindle motor start up time. If the h
Flag is not set and the MO signal is low when a command is received, the
WD1772 forces MO to a logic 1 and waits 6 revolutions before executing

Set Busy, Reset CRC,

Seek error, DRQ, INTRQ

h = 0 & MO = 0

Set MO wait 6 index

pulses

command

$FF to TR

$0 to DR

DR to DSR

DSR > TR

Reset DIRC Set DIRC

DIRC=1

-1 to TR +1 to TR

TR00*=0 &

DIRC=0

Send One Step Pulse

Delay according to r0,r1

0 to TR

TR = DSR

V = 1

6 IP Passed

Found IDAM

TR = Track in ID

ID CRC Error

Set CRC Error

Reset CRC Error

INTRQ

Reset Busy

INTRQ, Reset Busy, Set

Seek Error

INTRQ

Reset Busy

Type I command

received

Yes

No

Seek

Restore

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

Yes

No

No

Yes

Yes

No

Yes

No

TYPE I COMMANDS

SEEK & RESTORE

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 20/35

the command. At 300 RPM, this guarantees a one second spindle start up time. If after finishing the
command, the device remains idle for 9 revolutions, the MO signal goes back to a logic 0. If a command is
issued while MO is high, the command executes immediately, defeating the 6 revolution start up. This
feature allows consecutive Read or Write commands without waiting for motor start up each time; the
WD1772 assumes the spindle motor is up to speed. In the Atari the h flag must always be set to 0.

Restore (Seek Track 0)

Upon receipt of this command, the Track 00 (TR00*) input is sampled. If TR00* is active low indicating the
Read/Write head is positioned over track 0, the Track Register is loaded with zeroes and an interrupt is
generated. If TR00* is not active low, stepping pulses at a rate specified by the r1, r0 field are issued until
the TR00* input is activated.

At this time, the Track Register is loaded with zeroes and an interrupt is generated. If the TR00* input does
not go active low after 255 stepping pulses, the WD1772 terminates operation, interrupts, and sets the Seek
Error status bit, providing the v flag is set.

A verification operation also lakes place if the v flag is set. The h bit allows the Motor On option at the start
of a command.

Seek

This command assumes that the Track Register contains the track number of the current position of the
Read/Write head and the Data Register contains the desired track number. The WD1772 updates the Track
Register and issues stepping pulses in the appropriate direction until the contents of the Track Register are
equal to the contents of the Data Register (the desired track location). A verification operation takes place if
the v flag is on. The h bit allows the Motor On option at the start of the command. An interrupt is generated
at the completion of the command. Note: When using multiple drives, the Track Register must be updated
for the drive selected before seeks are issued.

FDC Type II Commands
The Type II Commands are the Read Sector and Write Sector commands. Prior to loading the Type II
command into the Command Register, the computer loads the Sector Register with the desired sector
number. Upon receipt of the Type II command, the Busy Status bit is set. If the e flag = 1 the command
executes after a 15 msec delay.

When an ID field is located on the disk, the WD1772 compares the Track Number on the ID field with the
Track Register. If there is not a match, the next encountered ID field is read and a comparison is again
made. If there is a match, the Sector Number of the ID field is compared with the Sector Register. If there is
no Sector match, the next encountered ID field is read off the disk and comparisons again made. If the ID
field CRC is correct, the data field is located and is either written into, or read from, depending upon the
command. The WD1772 finds an ID field with a Track number, Sector number, and CRC within four
revolutions of the disk, or, the Record Not Found Status bit is set (Status Bit 4) and the command is
terminated with an INTRQ.

Each of the Type II Commands contains an m flag which determines II multiple records (sectors) are read or
written, depending upon the command. If m = 0, a single sector is read or written and an Interrupt is
generated at the completion of the command. If m = 1, multiple records are read or written with the Sector
Register Internally updated so that an address verification occurs on the next record. The WD1772
continues to read or write multiple records and updates the Sector Register in numerical ascending
sequence until the Sector Register exceeds the number of sectors on the track or until the Force interrupt
Command is loaded into the Command Register, which terminates the command and generates an
interrupt.

For example: Witte WD1772 is instructed to read sector 10 and there are only 9 on the track, the Sector
Register exceeds the number available. The WD1772 searches for 5 disk revolutions, interrupts out, resets
Busy, and sets the Record Not Found Status Bit.

Read Sector

Upon receipt of the Read Sector Command, the Busy Status Bit is set, then when an ID field is encountered
that has the correct track number, correct sector number, and correct CRC, the data field is presented to the
computer. The Data Address Mark of the data field is found with 30 bytes in single density and 43 bytes in
double density of the last ID field CRC byte. If not, the ID field is searched for and verified again followed by
the Data Address Mark search. If, after five revolutions the DAM is not found, the Record Not Found Status

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 21/35

Bit is set and the operation is terminated. When the first character or byte of the data field is shifted through
the DSR, it is transferred to the DR, and DRQ is generated. When the next byte is accumulated in the DSR,
it is transferred to the DR and another DRQ is generated. If the computer has not read the previous contents
or the DR before a new character is transferred that character is lost and the Lost Data Status Bit is set. This
sequence continues until the complete data field is inputted to the computer. If there is a CRC error at the
end of the data field, the CRC Error Status bit is set, and the command is terminated (even if it is a multiple
record command).

At the end of the Read operation, the type of Data Address Mark encountered in the data field is recorded In
the Status Register (Bit 5) as shown:

Status Bit 5

1 Deleted Data Mark

0 Data Mark

Write Sector

Upon receipt of the Write Sector-Command, the Busy Status Bit is set. When an ID field is encountered that
has the correct track number, correct sector number, and correct CRC, a DRQ is generated. The WD1772
counts off 11 bytes in single density and 22 bytes in double density from the CRC field and the WG output is
made active. If the DRQ is serviced (i.e., the DR is loaded by the computer). If DRQ is not serviced, the
command is terminated and the Lost Data Status Bit is set. If the DRQ is serviced, the WG is made active
and six bytes of zeroes in single density and 12 bytes in double density are written on the disk. The Data
Address Mark is then written on the disk as determined by the a0 field of the command as shown:

a0 Bit 0 Data Address Mark

1 Deleted Data Mark

0 Data Mark

The WD1772 writes the data field and generates DRQ's to the computer. If the DRQ is not serviced in time
for continuous writing the Lost Data Status Bit is set and a byte of zeroes is written on the disk. The
command is not terminated. After the last data byte is written on the disk, the two-byte CRC is computed
internally and written on the disk followed by one byte of logic ones in FM or in MFM. The WG output is then
deactivated. INTRQ sets 24 µsec (MFM) after the last CRC byte is written. For partial sector writing, the
proper method is to write data and fill the balance with zeroes.

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 22/35

Set Busy, Reset CRC,

DRQ, LD, RNF, WP,

Record Type, INTRQ

h = 0 & MO = 0

Set MO

Wait 6 index pulses

E = 1

Wait 15 msec

Write Protect

command

Command

DAM in time

DR read

by Computer

All Bytes Read

M = 1

INTRQ, Reset

Busy, Set LD

INTRQ, Reset

Busy, Set RNF

INTRQ, Reset Busy

Type II command received

Yes

No

No

Write

Yes

Yes

No

No

Yes

Yes

No

Yes
No

Yes

No

6 IP Passed

Found IDAM

TR = Track in ID

Set CRC Error

No

Yes

Yes

No

Yes

No

SR = Sector in ID

Bring in Sector Lenght

Field, Store Length in

Internal Register

ID CRC Error

Set Record Type in Status

Bit 5

Read

Assemble First Byte

in DSR

Delay 2 Bytes of GAP

Assemble Next Byte

in DSR

CRC Error

+1 Sector Reg.

Set DRQ

Delay 9 Bytes of GAP

DR loaded

by Computer

Delay 1 Bytes of GAP

WG=1 Write 6 Bytes 00

Write DAM or DDAM as

specified by a0

DR to DSR, set DRQ

Write Byte to Disk

DR loaded

by Computer

All Bytes Written

Write CRC

Write 1 Byte of FF

WG=0

DDEN=0

Delay 11 Bytes

WG=1 Write 12

Bytes of 00

Set DL, Write Byte

00

Read

Write

Set DRQ

Set DL error

INTRQ, Reset

Busy, Set CRC

INTRQ, Reset

Busy, Set WP

Yes
No

Yes
No

No
Yes

No

No

Yes

No

Yes

No

Yes

Yes

TYPE II

COMMANDS

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 23/35

FDC Type III Commands

Read Address

Upon receipt of the Read Address Command, the Busy Status Bit is set. The next encountered ID field is
then read in from the disk, and six data bytes of the ID field are assembled and transferred to the DR, and a
DRQ is generated for each byte. The six bytes of the ID field are shown:

TRACK
ADDR

SIDE
NUMBER

SECTOR
ADDR

SECTOR
LENGTH

CRC
1

CRC
2

1 2 3 4 5 6

Although the CRC characters are transferred to the computer, the WD1772 checks for validity and the CRC
error status bit is set if there is a CRC error. The Track Address of the ID field is written into the sector
register so that a comparison can be made by the user. At the end of the operation an interrupt is generated
and the Busy Status is reset. Remember that in the Atari the bytes are read through the DMA FIFOs and
therefore only multiple of 16 bytes are written to memory. It is therefore mandatory to repeat the Read
Address command several times to pass the FIFO.

Read Track

Upon receipt of the Read Track Command, the head is loaded and the Busy Status bit is set. Reading starts
with the leading edge of the first encountered index pulse and continues until the next index pulse. All Gap,
Header, and data bytes are assembled and transferred to the data register and DRQ's are generated for
each byte. The accumulation of bytes is synchronized to each address mark encountered. An interrupt is
generated at the completion of the command.

This command has several characteristics which make it suitable for diagnostic purposes. They are: no CRC
checking is performed; gap information is included in the data stream; and the Address Mark Detector is on
for the duration of the command. Because the AM detector is always on, write-splices may cause the chip
to look for an AM inside address or data blocks.

The IDAM, ID field, ID CRC bytes, DAM, Data, and Data CRC Bytes for each sector are correct. The Gap
Bytes may be read incorrectly during write-splice time because of synchronization.

Write Track Formatting the Disk
Data and gap information are provided at the computer interface. Formatting the disk is accomplished by
positioning the R/W head over the desired track number and issuing the Write Track Command. Upon
receipt of the Write Track Command, the Busy Status Bit is set. Writing starts with the leading edge of the
first encountered Index Pulse and continues until the next index Pulse, at which time the interrupt is
activated. The Data Request is activated immediately upon receiving the command, but writing does not
start until after the first byte is loaded into the Data Register. If the DR is not loaded within three byte times,
the operation is terminated making the device Not Busy, the Lost Data Status Bit is set, and the interrupt is
activated. If a byte is not present in the DR when needed, a byte of zeroes is substituted.

This sequence continues from one Index Pulse to the next. Normally whatever data pattern appears in the
Data Register is written on the disk with a normal clock pattern. However, if the WD1772 detects a data
pattern of F5 through FE in the Data Register, this is interpreted as Data Address Marks with missing clocks
or CRC generation.

The CRC generator is initialized when any data byte from F8 to FE is transferred from the DR to the DSR in
FM or by receipt of F5 in MFM. An F7 pattern generates two CRC characters in FM or MFM. As a
consequence, the patterns F5 through FE do not appear in the gaps, data field, or ID fields. Also, CRC's are
generated by an F7 pattern.

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 24/35

Set Busy, Reset DRQ, LD,

RNF, WP, Record Type,

INTRQ

h = 0 & MO = 0

Set MO

Wait 6 index pulses

E = 1

Wait 15 msec

Write Protect

INTRQ, Reset

Busy, Set LD

INTRQ, Reset Busy

Type III Write Track

command received

Yes

No

Yes

No

INTRQ, Reset

Busy, Set WP

Set DRQ

Delay 3 Byte times

Yes

DR loaded

by Computer

DSR = F5

DR to DSR

set DRQ

DSR = F6

DSR = F7

Write DSR in MFM

Write A1 in MFM with

missing clock Init CRC

Write C2 in MFM with

missing clock

Write 2 CRC Bytes

IP Occured

IP Occured

DR loaded

by Computer
Write byte 00 Set LD

DDEN=0

DSR = F7

DSR = FC

DSR = F8-FB,FE

Write DSR in FM CLK=FF

Write 2 CRC bytes

CLK = FF

Write FC CLK = D7

Write F8-FB,FE CLK=C7

Preset CRC
Yes

No

No

Yes

No

No

Yes

No (FM)
Yes (MFM)

No

Yes

No

Yes

No

Yes

Yes
No

Yes
No

Yes
No

TYPE III

COMMAND

WRITE TRACK

Note that, in MFM, for the marks characters (between $F8 and $FF) the least significant bit is always
ignored and therefore: $F8=$F9, …, $FE = $FF.

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 25/35

Usually disks are formatted using IBM 3740 or System 34 formats with sector lengths of 128, 256, 512, or
1024 bytes.

Data Pattern In
DR (HEX)

In FM (DDEN* = 1) In MFM (DDEN* = 0)

00 thru F4 Write 00 thru F4 with CLK = FF Write 00 thru F4, in MFM

F5 Not Allowed Write Al8 in MFM, Preset CRC

F6 Not Allowed Write C29 in MFM

F7 Generate 2 CRC bytes Generate 2 CRC bytes

F8 thru FB Write F8 thru FB, CLK = C7 Preset
CRC

Write F8 thru FB, in MFM

FC Write FC with CLK = D7 Write FC in MFM

FD Write FD with CLK = FF Write FD in MFM

FE Write FE, CLK = C7, Preset CRC Write FE in MFM

FF 'Write FF with CLK = FF Write FF in MFM

FDC Type IV Commands
The Forced Interrupt Command is used to terminate a multiple sector read or write command or to insure
Type I status in the Status Register. This command is loaded into the Command Register at any time. If
there is a current command under execution (Busy Status Bit set) the command is terminated and the Busy
Status Bit reset. The lower four bits of the command determine the conditional interrupt as follows:

 i0,i1 Not used with the WD1772
 i2 Every Index Pulse
 i3 Immediate Interrupt

The conditional interrupt is enabled when the corresponding bit positions of the command (i3-i0) are set to a
1. When the condition for interrupt is met the INTRQ line goes high signifying that the condition specified has
occurred. If i3-i0 are all set to zero (Hex $D0), no interrupt occurs but any command presently under
execution is immediately terminated. When using the immediate interrupt condition (i3 = 1) an interrupt is
immediately generated and the current command is terminated. Reading the status or writing to the
Command Register does not automatically clear the interrupt. The Hex $D0 is the only command that
enables the immediate interrupt (Hex $D8) to clear on a subsequent load Command Register or Read
Status Register operation. Always follow a Hex $D8 with a $D0 command.

Wait 16 µsec (double density) or 32 µsec (single density) before issuing a new command after issuing a
forced interrupt. Loading a new command sooner than this nullifies the forced interrupt.

Forced interrupt stops any command at the end of an internal micro-instruction and generates INTRQ when
the specified condition is met. Forced interrupt waits until ALU operations in progress are complete (CRC
calculations, compares, etc.).

8 Missing clock transition between bits 4 and 5.
9 Missing clock transition between bits 3 and 4.

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 26/35

Status Register
Upon receipt of any command, except the Force Interrupt Command, the Busy Status Bit is set and the rest
of the status bits are updated or cleared for the new command. If the Force Interrupt Command is received
when there is a current command under execution, the Busy Status Bit is reset, and the rest of the status
bits are unchanged. If the Force Interrupt Command is received when there is not a current command under
execution, the Busy Status Bit is reset and the rest of the status bits are updated or cleared. In this case,
Status reflects the Type I commands.

The user has the option of reading the Status Register through program control or using the DRQ line with
DMA or interrupt methods. When the Data Register is read the DRQ bit in the Status Register and the DRQ
line are automatically reset. A write to the Data Register also causes both DRQ's to reset.

The Busy Bit in the status may be monitored with a user program to determine when a command is
complete, in lieu of using the INTRQ line. When using the INTRQ, a Busy Status check is not recommended
because a read of the Status Register to determine the condition of busy resets the INTRQ line.

The format of the Status Register is shown below:

BITS

7 6 5 4 3 2 1 0

S7 S6 S5 S4 S3 S2 S1 S0

Because of internal sync cycles, certain time delays are observed when operating under programmed I/O,
as shown.

Operation Next Operation

Delay Req'd.

FM MFM

Write to Command Reg. Read Busy Bit (Status Bit 0) 48µsec 24µsec

Write to Command Reg. Read Status Bits 1-7 64µsec 32µsec

Write Register Read Same Register 32µsec 16µsec

Status Register Description

BIT NAME MEANING

S7 Motor On This bit reflects the status of the Motor On output

S6 Write Protect - On Read: Not Used.
- On any Write: It indicates a Write Protect. This bit is reset when
updated

S5 Record Type /
Spin-up

- On Type I commands: When set, this bit indicates that the Motor
Spin-Up sequence has completed (6 revolutions).
- On Type II & III commands: this bit indicates record Type. 0 =Data
Mark. 1 = Deleted Data Mark.

S4 Record Not
Found (RNF) /
Seek Error

- On Type I commands: When set the desired track was not verified
- On Type II & III commands: When sets it indicates that the desired
track, sector, or side were not fount. This bit is reset when updated.

S3 CRC Error If S4 is set, an error is found in one of more ID fields; otherwise it
indicates error in the data field. This bit is reset when updated.

S2 Lost Data Byte
/ TR00

- When set, it indicates the computer did not respond to DRQ in one
byte time. This bit is reset to zero when updated.
- On Type I commands, this bit reflects the status of the TR00 signal.

S1 Data Request /
Index Pulse

- This bit is a copy of the DRQ output. When set, it indicates the DR
is full on a Read Operation or the DR is empty on a Write operation.
This bit is reset to zero when updated.
- On Type I commands, this bit indicates the status of the IP signal

S0 Busy When set, command is under execution. When reset, no command
is under execution

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 27/35

Status Register Summary

Type Command S7 S6 S5 S4 S3 S2 S1 S0

I All Type I MO X SU SE CRC T0 IP BSY

II Read Sector MO X RT RNF CRC LD DRQ BSY

II Write Sector MO WP RT RNF CRC LD DRQ BSY

III Read Address MO X X RNF10 CRC LD DRQ BSY

III Read Track MO X X X X LD DRQ BSY

III Write Track MO WP X X X LD DRQ BSY

IV Interrupt while busy - - - - - - - 0

IV Interrupt while idle MO X X X X T0 IP 0

 Idle MO WP11 X X X T0 IP 0

Where:

 0 = always 0

 X = undefined

 - = retains previous value

 MO = motor on (1 = motor on)

 WP = write protect (1 = write protected)

 SE = Seek Error (1 track not verified)

 SU = spin up (1 = spin-up completed)

 RT = record type (1 = deleted data)

 RNF = record not found (1 = record not found)

 CRC = CRC (1 = CRC error if rnf=1 error in ID field, if rnf=0 error in data field)

 T0 = TRK00* (1 = head at track 0)

 LD = lost data (1 = lost data)

 IP = index pulse (1 = disk at index pulse)

 DRQ = data request (1 = data register requires service)

 BSY = busy (1 = controller busy)

10 Not documented but when performing a read address to a track without addresses the RNF bit is set.
11 Not documented but after execution of a Type I command the WP status bit is continuously updated and
can be polled like MO and T0, but this is not true after a Type II or III command

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 28/35

Floppy Disk Programming
This section indicates how to program the FDC and related chips (DMA, PSG, and MFP) to perform FD
operations.

General information / Tips
 All the FDC commands are executed by sending the command to the FDC through the DMA chip. First

the drive must be selected by setting the proper outputs of the PSG chip, and then the command is sent
to the FDC. Most FDC commands are normally terminated when the INTRQ is raised. This can be
tested by polling the proper input of the MFP or it can generate an interrupt. The only two exceptions
are:

 Force Interrupt commands: The only two useful force interrupt commands are the force interrupt with no
interrupt command ($D0 command), and the force interrupt every index pulse command ($D4
command).

 Read/Write multiple sectors command: in this case the command is terminated when all the bytes
required are transferred by sending a force interrupt command.

 For any command sent to the FDC it is recommended to setup a watchdog. If the command does not
execute correctly after some time, send a $D0 to force interrupting the command.

 At completion of a FDC command you have to read the status to find out information on how the
command executed. Most of the status bits are not changed until a new command is received by the
FDC. Exception are for bits S7 (MO), bit S1 (IP), and sometimes bit S2 (TR00*) signals which are
continuously updated outside of the execution of a command.

 Wait until the motor is turned off by the FDC (by checking status bit S7) before deselecting it. If the
drive is deselected before the FDC has automatically turned off the MO the FDC will not receive the IP
and the motor will stay on forever (not good idea for your floppies!).

 FDC Bug: The read-track command should read a number of bytes of less than 6500. However it
seems that the WD1772 has a bug and from time to time this command fails and returns a huge
number of bytes (up to 21000 bytes!). In this case you should retry.

 Not documented in the FDC documentation, after execution of a Type I command the WP (bit S6) is set
in the status register. If you want to poll the WR status bit (for example to check if a non-protected disk
has been ejected, you have to leave the WD1772 to a Type I “idle mode”. This is done by following
Type II or type III commands by a Type I command (like a seek to current track command). Note that
this is not necessary after Type III commands that always returns Type I status after (this is
documented).

 Remember that the reading of bytes from the FDC is done through the DMA FIFOs in multiple of 16
bytes. So up to 15 bytes might get stuck in the FIFOs. Therefore you should take this in account for the
read address and read track commands.

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 29/35

Typical Floppy Disk Operations
This section of the document describe typical functions that should be provided in a Floppy Disk Library.

Enter Supervisor mode
Remember that access directly to the Hardware can only be done in supervisor mode.

Drive Select

Before sending any command to the drive it is necessary to select it. This is done by using the low level
access to the PSG as described in the PSG Programming section.

Seek to Track

If the drive has already been used and the Track Register contains the correct value, it is only necessary to
send a seek command to the FDC. If the position and/or the value of the Track Register is unknown it is
necessary to send a restore command before the seek command to reset the track register to zero and
position the head accordingly.

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 30/35

Multiple sectors read
The following diagram shows a typical read sequence for multiple sectors. Notice that this sequence uses
the “seek to track” sequence previously described.

Few things to note:

 If read does not succeed the first time it is recommended to try several times (e.g. 4 times). You have to
know that on an Atari FD retries happen more often that you may think!

 When 2 consecutive read fails, it is recommended to “shake” the head back and forth (using restore /
seek) to eventually remove dust particles under the head (this is not shown in the diagram). This is
sometimes referred as the shoe-shine technique.

 For multiple sectors read it is necessary to send a force interrupt command when the end address has
been reached. Therefore in multiple sectors mode you have to read the current address in the DMA
address register.

 The flock variable must be set during the FDC operation to be sure that the DMA is not accessed by the
VBL routine.

Set flock variable

Set RetryCnt

Set Drive and Side

bits in PSG

Seek to Track

DMA:

Reset

 Set Read mode

Set Address Cnt

Compute End addr

Set count reg.

Send Read

multiple sectors

command to FDC

Test Done

in MFP

DMA

caddr >= eaddr

Yes

No

Yes

Read DMA status

& FDC status

Error?

Read multiple sectors

No

Yes

No

Exceed

 retry count

Reset flock var.

Return

No

Yes

Set Timeout

Set Sector reg.

Yes

Seek OK

Set Error Status

Yes

No

Timeout ?

Force FDC

Interrupt

No

Read Multiple Sectors Sequence

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 31/35

Multiple sectors write
The following diagram shows a typical write sequence. Notice that this sequence uses the “seek to track”
sequence previously described.

Set flock variable

Set RetryCnt

Set Drive and Side

bits in PSG

Seek to Track

DMA:

Reset

 Set Wrtite mode

Set Address Cnt

Compute End addr

Set count reg.

Send Write

multiple sectors

command to FDC

Test Done

in MFP

DMA

caddr >= eaddr

Yes

No

Yes

Read DMA status

& FDC status

Other Error?

Write multiple sectors

No

Yes

No

Exceed

 retry count

Reset flock var.

Return

No

Yes

Set Timeout

Set Sector reg.

Yes

Seek OK

Set Error Status

Yes

No

Timeout ?

Force FDC

Interrupt

No

Write Protect?

Yes

No

Few things to note:

 If write does not succeed it is recommended to try several times (e.g. 4 times).
 When 2 consecutive write fails, it is recommended to shake the head back and forth (using restore /

seek) to eventually remove dust particles under the head.
 For multiple sectors write it is necessary to send a force interrupt command when the end address has

been reached. Of course the current address is read from the DMA.
 The flock variable must be set during the FDC operation to be sure that the DMA is not accessed by the

VBL routine.

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 32/35

Read Address
The following diagram shows a typical write sequence. Notice that this sequence uses the “seek to track”
sequence previously described.

Set flock variable

Set Drive and Side

bits in PSG

Seek to Track

DMA:

Reset

 Set Read mode

Set Address Cnt

Set count reg.

Read DMA status

& FDC status

Error?

Read Address

Yes

Reset flock var.

Return

Yes

Seek OK

Set Error Status

Yes

No

Send Read

address command

to FDC

Test Done

in MFP

No

Timeout ?
No

Set Timeout

Set count=20

--count = 0

Yes

No

No

Yes

Few things to note:

 Beware that a read address command only transfer 6 bytes. If you only issue one read address
command there are not enough bytes in the FIFO to start a bus request/grant and therefore nothing is
transferred to memory.

 It is possible to read all the addresses in a track starting from the Index pulse. For that matter you
should send a Force interrupt command (with every index pulse set), poll the FDC interrupt bit in the
MFP, and when set send several (20 is a good number) read address commands with only one DMA
operation. Now you just need to interpret the content of the buffer.

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 33/35

Read Track
The following diagram shows a read track sequence. Note that no retry is performed.

Set flock variable

Set Drive and Side

bits in PSG

Seek to Track

DMA:

Reset

 Set Read mode

Set Address Cnt

Set count reg.

Read DMA status

& FDC status

Error?

Read Track

Yes

Reset flock var.

Return

Yes

Seek OK

Set Error Status

Yes

No

Send Read track

command to FDC

Test Done

in MFP

No

Timeout ?
No

Set Timeout

No

Yes

Few things to note:

 Beware that a read track command transfer an unknown number of bytes that is not necessary a
multiple of 16. If you really want to get all the bytes (usually not very important) you need to send extra
command that reads enough data to flush the FIFO. As a maximum of 15 bytes may be stuck in the
FIFO it is possible to send 3 extra read address command to force a flush of the FIFO and to process
the buffer to remove possible extra data in the buffer.

Write Track

The write track is similar to the read track.

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 34/35

Measurement of FDC bytes time-width
It is sometimes useful to measure the time it takes for a byte to be assembled by the FD. A normal byte is
assembled by the FDC every 32µs (8 bits of 4µs) resulting in a DMA burst transfer request every 512 µs (16
bytes). Some protection mechanisms apply various possible variations on the bit width and it is therefore
useful to be able to measure these variations.

For that matter we are going to use one of the 68901 MFP timers. Usually timer A is a good choice as it is
only used for sound on Atari STe. The MFP is connected to a 2.4576 MHz crystal and the timer A offers
several pre-scaling. The best choice is to use a pre-scaling of 10 (this will become obvious later). This pre-
scaling results in a frequency of 245.76 KHz and a therefore a period of 4.0690104167 µs (you can use
4069 ns as a good integer approximation). As the timer register is 8 bits wide, an overflow will happen every
256 ticks or about every 1042 µs. Therefore, unless we use interrupts, we must ensure that we poll the value
of the timer in less than 1 ms in order not to miss any overflow.

When a read sector command (or for that matter a read track command) executes we need to set up a loop
that waits for the INTRQ to be raised by the FDC indicating the end of command. This is done by checking
the bit 5 of the MFP GPIO.

Inside the same loop we also need to check if the DMA address register has been increased. This change
happens every 16 received characters or, at nominal rate, every 512 µs.

Therefore the pseudo code for measuring timing looks like this:

Prepare the FDC (select, seek, etc)

Prepare the DMA (read mode, buffer address, count)

Prepare the timer (reset, set pre-scale to 10, start)

Loop {

 Read DMA address

 Has dma address changed ?

 Yes Get & store timer time, store new address

 Has the FDC raised the INTRQ ?

 Yes break

}

As we can see the main actions in this loop is:

 Read the DMA address, to check if it has changed, and
 Check the MFP GPIO register to see if the command has terminated.

The loop must take less than 512µs in order not to miss an address change and this should not be a
problem.

But the precision of the measurement is directly related to the execution time of the loop (time when both
tests fail). For example if the loops takes 100 µs the precision will be of 100/512 or about 20% for 16 bytes
or about 1.2% for a byte which is not acceptable. It is therefore important to optimize as much as possible
this loop. For example I have optimized this loop to less than 15 µs and this represents a worst case
precision of 15/512 (about 3%) on a chunk of 16 bytes or about 0.2% per byte. When shortening the loop do
not forget that you still have to handle the timer overflow (but if you are smart it should not affect the loop
time).

As mentioned above a pre-scale of 10, resulting in a change every 4µs, is a good choice. If you remember
that an address change in the DMA is occurring every 512 µs this corresponds to about 128 timer ticks with
this pre-scale. The value 128 happens to be just the median value ($80) of an unsigned byte. This is very
convenient to store, in array of byte, the variation of each 16 bytes chunks transferred. Note also that 4µs
provides a precision which is in line with the loop time.

Without taking any special care in the above loop you will notice that on regular basis the values
measured/stored are completely off. For example you will get one value largely bigger than normal and the
next one largely shorter to compensate. It should not take you too much time to figure out that the problem
comes from the fact that the processor is interrupted. You can leave with this problem by post processing
the values: you correct any pair of wrong values by replacing both values with the mean of the two. But
obviously a much better solution is to enter a critical section at the beginning of the loop above by turning off
all the interrupts.

Note that you do not get the timing for the first 16 bytes as there is no reference point on when the transfer
effectively starts. I have tried to come with a way to measure the timing for this first chunk which implies to
know when the first byte is transferred. The DMA has a status register that reflect the state of the FDC DRQ

 Atari ST Floppy Drives Programming

Copyleft Jean Louis-Guerin V1.1 - September 2013 35/35

signal in bit 3. In the Atari HW documentation it is explicitly said that it is a bad idea (i.e. don't do it) to query
the status register during DMA transfer. This makes sense as the DMA has two sides: one toward the FDC
to transfer bytes, and one toward the 68000 to read and writes DMA registers (not to mention DMA transfer).
Consequently it is probably too much load for the DMA to transfer a byte to/from the FDC while the 68000
try to read/write some internal register. However it is possible to get the time of the first DRQ by reading the
DMA status. As a matter of fact as the transfer has not yet started we are not creating too much perturbation
to the DMA and it works fine. This mean that just before the loop already described we need to add another
tight loop that just check for the first DRQ (just after the IP), and at the end of the loop we store the current
time which correspond to the time of transfer of the first byte. The idea seems interesting but unfortunately it
does not work for reasons that would be too long to explain here.

References
 Engineering Hardware Specification of the Atari ST Computer System The Atari Corporation -

Sunnyvale, California - 7 January 1986
 How To Use The Atari St Hard Disk Port Doug Collinge - School of Music, University of Victoria
 Atari ASCI/DMA Integration Guide – June 28, 1991
 Atari ST/STe/MSTe/TT/F030 Hardware Register Listing Dan Hollis - 1/22/94
 Atari ST Internals - Abacus Software 1985
 Le livre du Développeurs sur Atari ST - Micro Application -1989
 WD177X-00 Floppy Disk Controller/Formatter - Western Digital Corporation
 WD1772 Spécifications V1.2 – Jean Louis-Guerin 2014
 Probing the FDC – Davis Small (Start Vol. 1 no. 2 fall 1986)
 Flop.s Floppy Disk Driver – Atari corporation 1985
 Hitchhiker’s guide to the BIOS – Atari corporation 1985
 Atari ST/Mega – Edition Weka 1991
 Floppy disk library – Jean Louis-Guerin 2008
 Email from Nicolas Pomarède <npomarede> 2013

Revision
 V1.1 Added many information about Hard Disk Programming in the DMA section and added lots of new

information. The goal is to provide in future a document that includes FD and HD programming.
September 2013

 V1.0 Initial published revision – October 2008

