PROTECT_TXT.txt
Introduction into Copy Protection

Contents

0. Preface
1. Copy protection based on key disk
1.1 MFM Ffloppy disk data recording
1.1.1 Data bits separation
1.1.2 Synchronization field and ID byte
1.1.3 Overall track format
1.2 Intel 8272A floppy disk controller
1.2.1 8272A registers
8272A commands summary
8272A commands description
AT floppy disk controller
"Normal' PC floppy formats
independent protection tricks
Extra or missing sectors
Weak data bits
Data in gap

2

3

4
.2.5
i
1
2
3
4 Sectors with no data address mark
5
6
7
8
9
1
r

1.3

Sectors with no sector ID address mark
Sectors with bad sector ID address mark
Data field passing over index address mark
Multirate tracks

Data access over gap
0 Crazy ideas

2.
2.
2.
2
m
.3.
.3.
-3.
23.
.3.
.3.
-3.
.3.
.3.
3.
1.4 Timer based protection tricks
.4.1 Sector ordering (interleave) checks
4_2 Data transfer rate measurements
otection based on special hardware
5.1 Modified MFM formats
.5.2 Misplaced data tracks
5.3 Non-standard transfer rates
otection schemes examples
6.1 IBM Filing Assistant
.6.2 SuperLok
.6.3 Cops CopyLock 11
6.4 PC Shield
isk based protection
ip-level protection
0S-level protection
-2.1 Interleave changes
.2.2 Changed sector numbers
2.3 Unused disk areas
S-level protection
-3.1 Dependence on cluster number
.3.2 Unused (reserved) disk areas
2.3.3 Unused (allocation unit rounded) disk areas

3. Motherboard and system BIOS based protection

3.1 Data based tricks

3.2 Time based tricks

-

1.5

-

1.6

PRRrPRIRPRPIRRPAdRRPRRERRPRRERRPREARRERR

-0

l\)l\)gl\)l\)l\)wo

Glossary

Appendix A. Simple 8272A program

Appendix B. Simple HDC exerciser program
Appendix C. How to find out cluster number
Appendix D. Accessing File tail

Appendix E. How to distinguish motherboards

Preface

Page 1

PROTECT_TXT . txt

The following discussion of copy protection issues is almost completely
based on my own experiences with copy protected PC software and personal
communications with my colleagues. Therefore any statement made herein
can"t be considered as the holy truth (or any truth at all). This document
is NOT the manual on development of copy protection schemes, but a brief
introduction into "breaking"™ them. Anyone using this document or examples
supplied with it for the development of copy protection software or hardware
will violate license agreement.

No lBegal aspects of copy protection will be covered here. Nevertheless,
you can use this data from this manuscript only according to law. If there
is no law on computer software (as in Soviet Union), you should always
regard moral considerations. 1 can"t be held responsible for any improper
use of this document and code supplied with it.

You will see that protection examples are somewhat scarce in number and
are not always up to date. (E.g., parallel port locks, currently the most
popular protection device, are not covered at all). Taking into account
geographic location of Novosibirsk, this can hardly be my fault.

Any work of this sort is always based on support of other enthusiasts,
because no individual can afford to purchase all (or any, because they are
sold for the hard currency) of new copy protected programs. So I wish to
express my warmest gratitude for all people who supplied me with protected PC
software.

Finally, 1 beg your pardon for my far from good english. I will welcome
any suggestions on this document organization and style.

Serge Pachkovsky Novosibirsk
06 June 1991

1. Copy protection based on key disk

This type (or rather types) of copy protection are of the same age as
PC itself. The years of development and sophisticated floppy disk hardware
give rise to numerous protection methods. Although with recently appear of
parallel port locks, key disk technique seems to be old-fashioned, it still
has at least two obvious qualities. First, key disk can be simultaneously
used as distribution disk and second, this type of protection is very
cheap (but nevertheless hard to tamper with). So, key disks still can be
used for wide distributed personal use software. On my account, in the SU
key disk protection will dominate for a while.

In order to understand floppy disk controller (FDC) protection tricks,
one should be aware of basic FDC data and operation. Let us now consider
them. (Note: Sections 1.1 and 1.2 are mostly based on Intel documents "An
intelligent Data Base System Using the 8272', 8272 Singe/Double Density
Floppy Disk Controller Data Sheet", "8272A Single/Double Density Floppy
Disk Controller™.)

1.1 MFM floppy disk data recording

Modified Frequency Modulation (MFM) floppy disk format was introduced
in the IBM System 34 and is often referred to as "double density
recording”. Term "single density recording” corresponds to straightforward
IBM 3740 Frequency Modulation (FM) format, which used 4 @s to record one
bit of data. Original MFM recorded one bit in 2 &s cell, but for the IBM PC
mini-floppies was used 4 ®&s cell. Therefore, unformatted size of one track
become 6.1 Kb. So called "high density"™ PC disks merely implement 2 &s
data bit cell of original MFM specification.

Page 2

PROTECT_TXT.txt
1.1.1 Data bits separation

Data recording in FM format was simple: beginning of each bit cell was
specified by so called clock bit, and actual data was recorded at center of
each cell (data bit) (See fig 1.1.1a). Such technique allows simple data
bits separation, but wastes frequency range twice as needed to save actual
data. Nevertheless, complete removal of clock bits will make recorded data
containing large series of zero bits undecipherable because of random
variations in Ffloppy rotation speed and controller oscillator.

3 0 Ue, 3 U 3
3 33 33 3 33 3
3 33 33 3 33 3
AA
- l - - O -

Fig 1.1.1a FM data recording.

To deal with such deficiency, most clock bits were removed in MFM by the
following rule: Clock bit should be written at the edge of bit cell if no
data bit was written in the previous cell and no data bit will be written
in the current bit cell. (See fig 1.1.1b). Such encoding makes data bit
separation a more difficult task, but nearly removes clock bits overhead.

3|0 3 U 3 3 0 | 3
3 |33 3 |33 3 I 3 33 I 3
3 33 3 33 3 l 3 33 3
AA
Il- '1' '0. Io.

Fig 1.1.1b MFM data recording.

One can easily see, that meaning of both FM and MFM encoding depends
upon initial position of bit cell. For example, if we will place bit cell
as shown by dashed lines on fig 1.1.1b, sequence "1100" will become "0010-".
To provide unambiguous data bits decoding each data field on track
is supplied with synchronization field.

1.1.2 Synchronization field and ID byte

MFM synchronization Ffields consist of 96 zero bits (i.e., cells with
clock bit and no data bits) followed by 3 bytes of Alh (10100001b). Zero
bits permits to align correctly data cell, and Als to identify beginning of
actual data bytes. Although 12 zero bytes are written by FDC during format
(this value can"t be changed by software), only 1 byte (8 bits) is needed
actually to synchronize bit cell. Other 11 are for "just in case".

FM sync fields are simple - they consist of 48 zero bits only. (Again,
FDC needs 8 bits and other are for safety).

Different data (both user and auxiliary data) fields can be
distinguished by the single byte immediately following sync field. These
bytes can"t be mixed with user data even if the later contains the exact
byte sequence sync/ID, because these bytes (and only these bytes) do
not use standard clock bit conventions. Unfortunately, | have information
on corresponding clock bits for FM encoding only. ID bytes seem to apply
to MFM as well. (Note what data fields are recorded MSB-first).

ID byte Clock Field description

FC D7 Index address mark

FE C7 Sector ID address mark
FB Cc7 Sector data

F8 C7 Deleted data

FE C7 IBM bad track ID

Page 3

PROTECT_TXT.txt
Although in Intel documentation sync field is always referred to as
part of preceding gap, we will consider it to be part of following data
field.

1.1.3 Overall track format

The reference point for all floppy operations is physical index mark,
which is generated by diskette index hole. Entire floppy track format
starting with physical index mark can be described as follows:

- Physical index mark

- Preindex gap (GAP 5)

- Index address mark (1AM)

- Post index gap (GAP 1)

For n from 1 to N-1, where N is number of sectors on track:
- Sector n ID

Post ID gap (GAP 2)

Sector n data
- Post data gap (GAP 3)

For the last data sector on track:
- Sector n ID
- Post ID gap (GAP 2)
- Sector n data

- Final gap (GAP 4)

Index address mark (which is not used for any purpose by 8272A) has
somewhat different sync field: instead of Alh it uses C2h (11000010b),
which are followed by FCh (11111100b) ID byte.

Sector ID field contains FEh followed by one byte values C,H,R,N, where
C stands for cylinder number, H for head number, R for sector number and N
for sector size code. These bytes (including FEh) are validated by 16-bit
CRC, which follows. Size of user data in the following data field can be
calculated as 128 * 2”N, i.e., N=0 specifies data size of 128 bytes, N=1 -
256 bytes, N=2 - 512 bytes, and so on. C=H=R=N=FFh specifies IBM bad track.

Data field contains FBh followed by 128 * 2~N bytes of user data and two
bytes of CRC. Both in sector ID and in data field CRC is calculated using
polynomial x716 + xM2 + x5 + 1 with initial value of FFh (as always, MSB
first).

1.2 Intel 8272A floppy disk controller

Rumors say, what original PC FDC was implemented on Intel 8272 chip.
OFf course, it could be any pin compatible - 8272A, NEC &PD765, and so on.
I had never seen such a PC, so I just can"t tell. Nevertheless, in order to
maintain register level compatibility (good feature!) with first PCs, all
more recent controllers are nearly the same for programmer.

Commands are performed by 8272A in three subsequent phases: command
phase, execution phase and result phase. During command phase CPU instructs
8272A what to do. During execution phase, FDC performs requested action.
All user data transfers (if any) will be done during execution phase.
Execution phase is followed by result phase, when FDC returns status data.

While FDC data requests during command and result phases could be
infinitely delayed (data will be stored in internal 8272A registers), all
FDC requests during execution time should be satisfied immediately, or FDC
will generate data overrun error and terminate operation. More strictly
speaking, data request could not be delayed for more then time of transfer
of 8 data bits. Therefore, on 360Kb disk drive, which operates at 250K (1K
here = 1000) bits per second (KBPS), FDC will transmit byte of data each 32
&s or 31250 bytes per second.

Although 8272A itself can operate in either DMA or poling mode, only
relatively fast CPU is capable of transmitting data at such rate. Running
FDC in poling mode on double density disks requires at least 6 MHz 80286,
while AT high density floppy will eat up entire 10 MHz 80286.

Page 4

PROTECT_TXT.txt
1.2.1 8272A registers

8272A chip interacts with CPU trough two registers: Main Status
Register (MSR) and Data Register (DR). MSR is read only. Either DR could be
read or written is determined by RQM bit of MSR. Meaning of bits in MSR
could be seen on fig 1.2.1a.

UAAA

3 ROM = DIO = NDM = CB = D3B = D2B = D1B = DOB =

AAY
3 3

3 3 3 3 3 AAAAA Drive O busy.
3 3 3 3 3 3 AAAAAAAAAAA - Drive 1 busy
2 2 2 2 2 AAAAAAAAAAAAAAAAA - Drive 2 busy
2 2 2 2 AAAAAAAAAAAAAAAAAAAAAAA - Drive 3 busy
3 3 3 AAAAAAAAAAAAAAAAAAAAAAAAAAAAA FDC busy

3 3 AAAAAAARAAAAAARAAAAAARARAAAAAAARAAAA non-DMA mode
3

> AAA - Data Input/Output
AAA Request for Master
Fig 1.2.1a Main Status Register of 8272A.

Bit DxB will be set to 1 then corresponding drive performs seek or
recalibrate command. CB bit will be set then FDC performing read or write
operation. NDM is set when FDC is in execution phase and DMA operations
disabled (So it indicates what more data should be fed to or read from
DR). DIO will be one then CPU should read data from DR and zero if CPU
should feed data to DR. RQM = 1 indicates that DR is ready to transfer next
byte. Direction of transfer depends upon DIO value.

Internally, 8272A stores current cylinder number for each of disk
drives connected to it. Because floppy drive can®t distinguish one cylinder
from another (except cylinder 0), this is needed to perform seek operations,
which are translated by FDC to drive step pulses. These registers are
cleared by FDC reset (but floppy disk drive will not return to track O on
reset).

Other important internal registers contain step rate time, head unload
time and head load time (see Specify command).

1.2.2 8272A commands summary

8272A commands can be divided into three groups: user data transfer,
floppy control and diagnostic aids. User data transfer includes read data,
read deleted data, write data, write deleted data and three scan commands:
scan for equal, scan for lower or equal and scan for higher or equal.
Floppy control includes recalibrate, seek, sense drive status, sense
interrupt status and format a track commands. Read sector ID and read track
commands could be considered as diagnostic. All commands with unrecognized
Ffirst byte will be treated as invalid command.

8272A commands can be easily identified by low nibble of first command
byte - see table 1.2.2 (although some of such commands will be invalid).

Table 1.2.2. 8272A opcodes.

x1 Scan equal

X2 Read a track

X3 Specify

x4 Sense drive status

x5 Write data

X6 Read data

X7 Recalibrate

X8 Sense interrupt status
x9 Write deleted data or Scan lower or equal
XA Read 1D

xC Read deleted data

Page 5

PROTECT_TXT.txt
xD Format a track or Scan higher or equal
xF Seek

Generic sequence to execute 8272A command consists of the following steps:

O. If DMA will be used in operation, program channel 2 of 8237A for
the single byte transfer mode. (Note: Terminal Count (TC) signal from DMA
will cause immediate completion of FDC operations).

1. For each byte in command, wait until RQM bit = 1, when check DIO:
value of 0 indicates what FDC ready to accept command, 1 says what either
your command was not recognized by FDC (and next read from DR will return
80h) or that you had already fed all data in FDC (and your command is
invalid, too).

IT your command does not have execution and result phase
(Specify), you stop here.

2. If you are running FDC in poling mode and command transfers data
during execution phase (read, write, format), you wait here while NDM bit
is zero. When while NDM is not zero, for each byte read or written you wait
for the RQM bit to be set and then writes next byte to (or reads from) DR.

IT you are using DMA-mode transfer (or no transfer at all), you
simply goes to step 3.

3. End of execution phase is indicated by IRQ 6 (int Oeh). You can
either enable 8272A interrupts and detect this in your interrupt routine or
you can constantly poll 8259A interrupt request register (IRR).

IT command does not have execution phase (Sense drive status), you
go to step 4.

4. In the result phase you read command status from FDC by poling RQM
byte (be sure that DIO = 1 here). 8272A can return up to 3 status bytes
(which are shown below) along with other data, which will change from
command to command.

UAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAARAAAAAA
3 IC 3SE S EC 3NR 3 H =3DS1 3DSO 3 STO
AAU
UAAA
SEN = 0 =DE 3OR = 0 3ND =MWV 3 MA 3 ST1
AAAAAAARAAAAAAAARRAAAAAAAARAAAAAAAAAAAAAAAAAAARAD
UAAA,,
3 0 = CM =DD = WC = SH = SN =BC =MD 3 ST2
AAU
UAAAS
SFET S Wp = RDY = TO =TS = H = DSl =DSO 3 ST3
AAU

Fig 1.2.2 Status bytes 0-3 of 8272A

STO.

IC - Interrupt code:

00 - Normal termination of command.

01 - Abnormal termination of command (Operation still can be 0k,
other condition codes should be tested).

10 - Invalid command.
11 - Abnormal termination (disk ready signal changed during
execution).

SE - Seek operation ended.

EC - Equipment check error (fault signal received from drive or
cylinder 0 was not reached after 77 pulses during Recalibrate).

NR - Not ready (Drive becomes not ready during read or write or side 1
was requested for single-sided disk).

H - Head address.

DSO, DS1 - Drive address.

ST1.

Page 6

PROTECT_TXT . txt

EN - End of track error (FDC attempt to access a sector beyond the
final sector of track). This flag will be set to 1 (and therefore
IC will be equal to 01) if FDC had read sector specified in EOT
command parameter and TC signal is low, so every read operation in
poling mode will end with EN error.

DE - Data error. Either sector AM of sector data CRC is invalid.

OR - Overrun error. 8272A had not received CPU or DMA services within
the specified time interval (32 &s on 360Kb drive), so data was
lost.

ND - Sector not found. Specified sector was not found during 2 disk
revolutions (i.e., two index pulses were detected since the start of
operation). For multi-sector transfers, 2-revolutions time-out
applies for each sector separately.

NW - Write protect error. Write protect signal was detected during
write or format operation.

MA - Missing address mark. Either sector AM or data AM was not found.

ST2.

CM - Control mark. Deleted data AM detected during read data command or
data AM during read deleted data command and SK bit was not set.

DD - Data error. Sector data CRC invalid. DE will be set, too.

WC - Cylinder address error. Cylinder address on track does not match
specified cylinder address.

SH - Scan hit. Scan command conditions were satisfied.
SN - Scan not satisfied.
BC - Bad track error. As WC, but cylinder address from track is FFh.
MD - Missing data AM error. MA will be set, too.
ST3.
FT - Fault. Disk drive indicated fault.

WP - Write protect.

RDY - Drive ready signal. On PC and AT floppy subsystems this will
always be set, regardless whether drive is ready (or installed at
all).

TO - Track O signal.

TS - Two-sided. On PC and AT floppy subsystems this will be 0 always.

1.2.3 8272A commands description

Here 1711 list all 8272A commands in the order in which they appear in
table '"8272A command set' of Intel 8272A manual. Of course, this
description is not sufficient to implement floppy disk driver. See Intel
manual for complete information or Appendix A for the simple example.

Read Data
AAAAAAAAA
Command: oMT MM SK O 0 1 L1 0
AAU
oo 0 0 0 0 HDS DSl DSO
AAU
C/H/R/N/EOT/GPL/DTL
Execution: Data fields on track been read.
Result: STO/ST1/ST2/C/H/R/N
MT (MultiTrack) instructs to continue read operation on track
1 of the same cylinder.
SK causes FDC to skip deleted data fields.
HDS indicates head number used iIn operation.

DS1,DSO constitute a drive number.
C/N/R/N sector ID of starting sector

Page 7

PROTECT_TXT . txt

EOT number of sectors on track
GPL inter-sector gap length
DTL should be FFh for MFM.
Read Sector 1D
AAAAAAAAAAAAAA
Command: 0 MEM O O 1 0 1 0
AAU
o0 0 0 0 0 HDS DSL DSO
AAU
Execution: First correct sector ID been read. (First signifies
"first encountered starting from current head
position”™ and not "first after physical address
mark'™)
Result: STO/ST1/ST2/C/H/R/N
Read Deleted Data
AAAAAAAAAAAAAAAAA
Command: MT MFM SK O 1 1 0 0
AAU
o0 0 0 0 0 HDS DSL DSO
AAU
C/H/R/N/EOT/GPL/DTL
Execution: Deleted data fields on track been read.
Result: ST0/ST1/ST2/C/H/R/N

SK instructs FDC to skip data fields.

Read a Track

AAAAAAAAAAAA

Command: 0 MEM o SK 0 0 O 1 0
AAU
.o o0 0 0 0 HDS DSl DSO
AAU
C/H/R/N/EOT/GPL/DTL

Execution: Data fields on track been read.

Result: STO/ST1/ST2/C/H/R/N

This command will read data fields regardless of C/H/R/N values
stored in sector IDs. Data field that lacks valid IDs can be read by
this command. Although Intel documentation specifies that Read Track
command stops then no data fields at all found on track or sector count
reaches EOT value, this command will terminate then no data address
mark was found after sector ID address mark with bad CRC.

Read a track command will accept ANY N value, so it can read
inter-sector gap (or all track, if N is large enough) along with sector
data. Sectors will be read in order of appearance under r/w head, i.e.,
if track was formatted with 8 512-byte sectors (interleave 1:1), and
you start read track command with R = 1, N = 3, EOT = 4, sectors 1, 3,
5 and 7 will be read.

Write Data
AAAAAAAAAA
Command: o Mr MM O O O 1 0 1
AAU
o0 0 0 0 0 HDS DSL DSO
AAU
C/H/R/N/EOT/GPL/DTL
Execution: Data fields on track been written.
Result: ST0/ST1/ST2/C/H/R/N

Write Deleted Data

Page 8

AAAAAAAAAAAAAAAAAA
Command:

Execution:
Result:

Format a Track
AAAAAAAAAAAAAA
Command:

Execution:

Result:

PROTECT_TXT . txt

MT o oMEM o o 1o oo o 1o
AAU
0 0 0 0 O HDS DSl DSO

AAU
C/H/R/N/EOT/GPL/DTL

Deleted data fields on track been written.
ST0/ST1/ST2/C/H/R/N

MT o MeMmoooo o 1. .1t o 1
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAU
0 0 0 0 O HDS DSl DSO

AARAAAAAARAAAAAARAAAAAARAAAAAAAAAAAAAAAAAAAAAARAU
N/SC/GPL/D

Command formats track with SC sectors of size N.
Sectors are filled with byte D. C/H/R/N values for
each written sector ID should be supplied by user
(as In write data command).

STO/ST1/ST2/C/H/R/N

Note: GPL = O will be understood as 100h.

Scan Equal
AAAAAAAAAA
Command:

Execution:

Result:
Scan Lower or Equal

AAAAAAAAAAAAAAAAAAA
Command:

Execution:

Result:

Scan High or Equal
AAAAAAAAAAAAAAAAAA
Command:

Execution:

Result:

S Mro MEM oSk 1 o 0 0
ARAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAD
0 0 0 0 O HDS DSl DSO

AAU
C/H/R/N/EOT/GPL/STP

Data fields on track been read and compared

byte by byte with data supplied by CPU or DMA.

IT scan condition not satisfied, scan continues
with sector R+STP.

STO/ST1/ST2/C/H/R/N

MT o MEMo o SK o o4 1o o e 1

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAARAAAAAAU
0 0 0 0 O HDS DS1 DSO

AAU
C/H/R/N/EOT/GPL/STP

Data fields on track been read and compared

byte by byte with data supplied by CPU or DMA.

IT scan condition not satisfied, scan continues
with sector R+STP.

STO/ST1/ST2/C/H/R/N

Mr o oMEM SK L e 4 o 1

AAY
0 0 0 0 O HDS DSl DSO

AAU
C/H/R/N/EOT/GPL/STP

Data fields on track been read and compared

byte by byte with data supplied by CPU or DMA.

IT scan condition not satisfied, scan continues
with sector R+STP.

ST0/ST1/ST2/C/H/R/N

Page 9

PROTECT_TXT.txt
Recalibrate

AAAAAAAAAAA
Command: oo oo o o0 0. 1o 1 1
AAU
oo oo 0 0 0 0 DSL . DSO_
AAU
Execution: Recalibrates specified drive.

All 4 drives can be recalibrated simultaneously. 8272A can
perform read or write operation on any other drive. So sense interrupt
status command should be used to distinguish interrupt caused by
completion of recalibrate from operation completion interrupt.

FDC will not permit any command on recalibrated drive before sense
interrupt status issued for seek completed interrupt.

Sense Interrupt Status

AAAAAAAAAAAAAAAAAAAAAA
Command: o o o o 1 0 0 0
AAU
Result: STO/C (Note: then IC = 10 (invalid), C will not be
returned)

8272A will generate interrupt request if any of the following
events occurs:

a) Result phase begins for Read/Write/Format/Scan

b) Ready signal from one of drives changed.

c) Seek/Recalibrate completed.

d) Non-DMA data transfer required.

Interrupt service routine can easily distinguish this cases:
if NDM = 1 then it"s data transfer request

else
if CB =1 then it"s result phase beginning
else
if SE = 0 then it"s ready signal change
else it"s seek or recalibrate end.
Specify
AAAAAAA
Command: 0 0 0 0 0 0 1 1
AAU
SRT HUT
AARAAAARARAAAAAARAAAAAARAAAAAARARAAAAAAARAAAAAARAU
HLT ND
AAAAAAAAAAARAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAU
SRT Step rate interval. Sets the minimal delay between two drive

step pulses. (1-16 ms, SRT = OFh corresponds to 1 ms).
Older PC drives supported 3 or 4 ms step rate, some never ones
can cope with 2 or even 1 ms step rate.

HUT Head unload time. Delay between completion of read/write
operation and lifting head. (16-240 ms, HUT = 0 is 16 ms).
This is usually set to 240 ms.

HLT Head load time. Delay between head load command and start of
read/write operation. (2-254 ms, HLT=1 is 2 ms).
This is usually set to 2 ms.

ND 0: DMA mode. 1: non-DMA mode.

All timers inside 8272A are actually synchronized to WR CLK signal, so
all values shown here are correct for WR CLK 500 KHz or data transfer rate
500 KBPS. Lowering frequency of WR CLK will lengthen all internally counted
delays.

sense Drive Status
ARAAAAAAAAAAAAAAAA

Page 10

PROTECT_TXT.txt
Command: 0o 0 0 o0 0 1 0 0
AAU
.0 o0 0 0 0 HDS DSl DSO
AAU
Result: ST3

Seek
AAAA
Command: oo oo oo oo 1 L
AAD
L0 0 0 0 0 HDS DSl . DSO
AAU
C

See Recalibrate.
1.2.4 AT floppy disk controller

Original PC and XT floppy disk controllers were capable of running four
floppies. AT FDC, although register compatible, can run only 2, so one can
install 2 FDCs into AT. Most clone BI0OSes does not support secondary FDC,
and 1 never had IBM AT to check wether IBM BIOS does. First FDC occupies
address range 3F0-3F7, secondary FDC is at 370-377. All information here
on primary FDC also can be applied to secondary by moving references to
this address range. 8272A (or it"s large scale integrated substitution) is
mapped to ports 3F4 (MSR) and 3F5 (DR).

As you have already seen, 8272A itself can"t control disk drive motor
status, so register 3F2 (digital output register) provides such services.
(see fig 1.2.4a).

UAAA,
=D 2 ¢ = B 2 A S IE =EC 2 D512 D03
AAD

AAAAAAAAAAAAAAAAAAU 3 3 AAAAAAD
3 3 3 AAAAAAAA Drive select
3 3 AAAAAAAAAAAAAAAAA Controller enable
3 AAAAAAAAAAAAAAAAAAAAAAA ~ Interrupts enable

AAAAAAAAAAARAARAAAAAAAAAAAAAAAAAAAAAAAAA ~ Motor enable
Fig 1.2.4a Digital output register (3F2h).

Bits DS1 and DSO of digital output register overrides DS bits specified
in 8272A command, so one can change disk drive on the fly during command
execution. Although this is dangerous technique, many copy protection
tricks are based on this feature.

Setting EC bit to zero resets controller, so any operation (e.g., format
track or write data) can be stopped on any time. (Although special care
should be applied to perform abrupt termination without oscillations).

IE bit was intended for use in multiply-controller systems. Because all
FDCs use the same IRQ 6 and DMA channel 2, inactive controller can (or
cannot - no one can say) drive this line low, thus forbidding other
controllers from obtaining system services.

Drive motor enable bits iIs another source of protection tricks (See
1.4.2).

Second additional register is at 3F7 (diskette control register). (This
register does not exist on old XTs, but can often be found on recent
clones). To my best knowledge, only two lower bits are meaningful for write
and single upper bit for read.

3F7 write - select transfer rate:

00 - 500 KBS (MFM) 01 - 300 KBS (MFM)
10 - 250 KBS (MFM) 11 - 125 KBS (FM)

Thirst three values (00 thru 10) was mentioned in IBM manuals. Although

last value is undocumented, it works Ok on any AT FDC 1°d ever encountered.

Page 11

PROTECT_TXT.txt
(This is significant transfer rate - it permits to read/write SD disks in
360 Kb drive). Values 00 thru 10 are intended for use with MFM floppies, so
they have pulse length 1/4th of cycle length. 125 KBS clock have pulse
width 1/8th of cycle length.

Because AT FDC have no 175 KBS FM clock, single density disks can"t be
written in high density (360 RPM) drive. Due to high error resistance of FM
data format, single density disks still can be red in 360 RPM drive. FM
floppies can be both red and written in 360Kb (300 RPM) drive.

3F7 read - drive change status: bit 7 set (test al, 80h) means that
diskette was changed. Media changed indicator will be reset after first
seek to cylinder other then zero.

Obvious use for the 3F7 register in the copy protection world concerns
adjusting of bit cell position. Because FDC switches to new transfer speed
almost instantaneously, switching transfer speed at calculated moment will
shift bit cell by small fraction of it"s length. This technique permits to
read any section of track, provided that at least one valid data field
exists and position of section of interest is approximately known.

1.2.5 "Normal"™ PC floppy formats

First standard PC floppies were designated for use with single- and
double-sided 40 tracks mini-floppies. Following Intel specification, they
had 8 512-bytes sectors per track, thus using 4096 bytes (65%) of 6250
bytes of unformatted track capacity. Sectors on track were ordered
sequentially (interleave 1:1), as in all other standard formats. More
recent 9 and 10 sector/track floppies use 74% and 82% of total space
respectively. Theoretical limit for formatted DD track capacity is
something about 89.2% (56575 bytes or 10.89 sectors/track).

Such increase in floppy capacity was made possible by high stability of
revolution time in modern floppies. Although deviation of 2.5% from nominal
revolution time is permitted by IBM, 1°d never seen floppy drive with
revolution time outside 0.2% region. Such stability permits to decrease
intersector gap length.

For example, if possible deviation in rotation speed is f2.5%, one
should reserve inter-sector gap sufficient to hold any resulting sector
length. Suppose that floppy been formatted on drive with slowest possible
rotation speed, and will be updated of drive with fastest rotation speed.
In such a case, one should reserve at least (512+62) * (2*2.5%) bytes for
intersector gap (62 is minimal sector header size for MFM format). This
will result in minimal gap of 29 bytes, so even 10 sectors/track format is
Ok for such deviations.

In order to maintain compatibility (at least partial) with 40 tracks
formats on 80 tracks HD drive, they are simulated by skipping all odd
tracks. Therefore 360K disks written in 360K drive always can re read in HD
drive, but 360K Ffloppy written in HD drive can be incompatible with 360K
drives.

Because key floppies are almost invariably implemented on 360K drives,
we will leave all high density formats alone.

1.3 Time independent protection tricks

Here we will consider floppy protection marks, which can be verified
without use of devices others then FDC itself. This tricks should work on
any system equipped with compatible FDC.

Note: Anytime when 1 will mention bit-copier, it will concern the
latest version i"d seen. Anyway, they are not the latest versions exists.
1 have copies (illegal copies for the causes mentioned in preface) of Copy
Il - PC release 7.10, CopyWrite September 1988 edition and TeleDisk v
2.11.

Note: Statement "could not be reproduced" applied hereafter to one
or other protection mark indicates not physical limits of PC hardware, but
limits of my knowledge of it. I will be grateful to anyone who will expand
these limits.

Page 12

PROTECT_TXT.txt
1.3.1 Extra or missing sectors

Because first MS-DOS floppies had a lot of unused space on track, it
was an obvious idea to store additional sector(s) on track along with
standard MS-DOS sectors. Even far better packed 10 sectors/track format
will accommodate single 256-bytes sector. Other place to locate such
additional sectors is track 41, which is not used by DOS, but can be
accessed in most drives. On 80 track drives, extra sectors could be hidden
on odd tracks.

Now, this mark alone can"t be considered as good copy protection,
because extra sectors can be easily found by read sector ID command. Any
bit-copier on market (CopyWrite, CopyllIPC, TeleDisk, etc.) will do it.
(Although sectors on odd tracks will not be found by some programs). For
the nice variations of this scheme, see sections 1.3.4-1.3.8.

1.3.2 Weak data bits

Other old good protection trick is data, which will appear different in
subsequent read operations (weak data). Weak data can be caused by either
data falling into digital "uncertain area', or by long series of zero data
and missing clock bits. In first case, decision of FDC will be driven by
random noise. In later case, random variations in drive rotation speed will
move bit cell out of synchronization (Such data could not be written without
modification of FDC hardware, so we will not discuss them).

One good ability to generate weak data is to place them atop of surface
defect. Such weak data will not disappear after write sector data command.
Unfortunately (hi!), manufacturer surface defects are now rare to occur,
so one should make defects manually. 1"d seen a lot of such techniques,
ranging from disk scratching with a rusty nail to careful evaporation of
surface layer by 1 kVA infrared laser. Nevertheless, it"s hardly a software
issue.

Weak data bits could be created by software, too. First approach is to
manipulate drive select/deselect bits in digital output register (3F2h).
For example, if you wish to create weak byte on drive A:, you should start
write operation, wait until desired byte will be transferred to disk drive
(not to FDC!) and repeat sending to digital register values 1Dh (select
drive 1) and 1Ch (select drive 0) while byte being transferred. Such
operation will modulate all data (including clock bits) written to disk
with square wave, moving them into uncertain region.

Second technique requires almost the same operation with diskette
control register (3F7h). Data rate switching will misplace data and clock
bits and deform them in shape, also moving into uncertain area.

Bit copier encountering weak data faces an interesting dilemma:
whether weak bits are consequence of unrecognized surface defect, and
operation should be repeated until original data will be recovered or
is it a protection mark, which should be reproduced in all it"s glory?

Of all bit-copiers i"d encountered, CopyWrite only was able to cope
with weak data, although it converts single weak byte into something of
10 to 12 bytes in length, so original mark still can be easily
distinguished from copy. Wherefore, weak data is not such a bad thing for
cheap protection and will obviously pop-up in homemade SU software.

1.3.3 Data in gap

One can easily store small amount of data in gap after sector data
field (GAP 3). Provided that sector is not overwritten, mark will reside in
gap completely safe. Upper margin for number of data bytes, which will fit
into GAP 3 given by GPL value of track format command. Verification of such
mark is simple (at least for the First sector on track) - read a track
command with N one large then actual value in sector ID will load gap data
into memory.

Storing data in gap requires more sophisticated procedure. Assume

Page 13

PROTECT_TXT.txt

someone wishes to store 10 bytes of data into gap of first 512-bytes
sector on track 0 head 0. He should first format track 0, specifying length
code 3 (1024 bytes) for the first sector 1D but length code 2 for the
format parameters. Then he should start write operation on his dummy
1024-bytes sector, but stop it after transfer of 526 bytes (512-byte sector
data + 2-byte CRC + 10-byte gap data + 4 byte safety margin). Then he
should start format track operation with length code 2 (both format
parameters and sector ID) and stop it somewhere inside GAP 2 (sector ID
already written, but data field still not affected). Both format and write
operations can be stopped by either controller reset (sending 0O to digital
output register, 3F2h) or by changing selected drive (see 1.3.2).

Unfortunately, it can sometimes be difficult to differentiate between
"empty" gap and gap containing protection data. Older floppy drives have
had a relatively large write signal attenuation times, so gaps written on
such drives are filled with random garbage, which can be misinterpreted as
binary protection data. Protection scheme designer can enhance these
difficulties, using weak bits (1.3.2) inside gap protection data.

Among mentioned bit-copiers only CopyWrite was able to detect data in
gap.- Single curious exception is first sector of track 0, head 0, which is
deliberately ignored by CopyWrite as place for gap data.

1.3.4 Sectors with no data address mark

Sectors without data address mark will generate missing data AM error
(MA bit in STO and MD bit it ST2 will be set) during data read and write
operations. Read sector ID command will terminate normally on such sector.

Storing sector with no data AM requires simple format operation, which
should be stopped after writing sector ID AM but before writing data AM (as
in 1.3.3). Special care should be taken to eliminate early existed data AM,
either by using electromagnetically erased disks or by preliminary format
at different data transfer rate. Alternative way (which will not work for
first sector on track) is: First, format track with GPL value selected to
place data field where the data AM sync field should start on target disk.
Second, reformat track with desired GPL value and stop before sector AM is
written.

1.3.5 Sectors with no sector ID address mark

Sectors without sector ID AM can be written in the following fashion:
Format track, storing length code N+1 for the sector before one of
interest. Then read content of this dummy sector and write it back,
stopping operation then sector ID AM already overwritten but data AM still
Ok. Now you had got sector with no ID AM. Such sector will NOT raise any
exceptions in any FDC operations. It can"t be, generally speaking, read by
any command without special care taken, so it almost does not exist.

No one of tested bit-copiers was able to recognize such sectors (but
any hardware bit-copier should be able to do it), so missing ID AM can be
considered as good protection. Nevertheless, verification difficulties make
appearance of such mark in "live"™ protection scheme highly unlikely. (But
see 1.3.10).

1.3.6 Sectors with bad sector ID address mark

This mark differs from 1.3.5 only by extent of ID AM corruption. Here,
FDC is still able to recognize ID AM, but CRC on it verifies incorrectly.
This mark can®"t be detected by read sector ID command, but will set DE bit
in ST1 and clear DD bit in ST2 during execution of read sector command, so
with values C/H/R/N been known, verification presents no problems. Sector
with bad ID AM will nevertheless appear in read a track command. Then exact
C/H/R/N values are not known, they still can be obtained by the following
procedure: Knowing exact position of data field from time measurements, one
can deduce approximate position of ID AM and read it, using technique of
adjusting bit cell (See 1.2.4).

Page 14

PROTECT_TXT.txt

Valuable for copy protection designer modification of this mark has
invalid CRC of sector ID and no data AM. Such sector will cause termination
of read a track command, thus preventing detection of "normal" marks of
such type placed after it by bit-copier.

In order to write bad ID AM, one should stop format operation while
sector ID AM CRC being written. (Let me again note, that FDC has internal
buffer for something about 3 bytes, so controller starts write CRC not then
last ID byte been fed to DR, but some time after that). CopyWrite will
recognize sector with bad ID AM and copy it.

1.3.7 Data field passing over index address mark

Protection marks of this type had appeared when someone asked: That FDC
will do if format a track command will specify total data length on track
to be slightly more then track can hold? Consider the following results
obtained by formatting DD disk in HD drive with 13h 256-bytes sectors and
different GAP 3 values (Sector offsets measured from physical index hole).
Note that revolution time of drive used is 166.52 ms.

Table 1.3.7
UAARAAAA
3 GAP 3 value 3 Sector 1 offset 3 Sector 13h offset 3
3 3 Start 3 Start End 3
AAAAAAAAAAAAAAAARAAAAAAAARAAAAAARAAAAAAAAAAAAAAAAAAAARAAAAAAA"

3 01h 3 3.849 3 156.981 165.46 =
3 08h 3 3.844 3 160.334 2.29 s
3 10h 3 missing 3 164.180 6.14 3
3 14h 3 missing 3 missing 3
3 18h 3 missing 3 1.519 10.00 =

AAU

One can see that there is small area at the beginning of track, which
is not used by sector data (actually, its used by index address mark). This
area can be overwritten by last sector on track (as on second line of
table 1.3.7), but if last sector data overlaps with beginning of track too
much, sector 1 will be erased (line 3). If the start of data field of last
sector will pass over index hole (line 4), controller will write GAP 4
until next occurrence if Index hole, thus overwriting all existing sectors
on track. If the start of sector ID AM passes over index hole, too (line
5), this sector will be preserved, overwriting all previously written
sectors.

Sector passing over 1AM can cause significant problems for bit-copier
unaware of their existence, because many protection marks are generated by
repeated format operation, which will destroy data in over-1AM sector. No
one of tested bit-copiers was able to reproduce such sectors (i.e., retain
both sector data and sector position), so this mark being extensively used
in SU copy protection schemes.

1.3.8 Multirate tracks

As we have seen in previous section, FDC ignores IAM at the beginning
of track, so sectors can appear at any position inside track. It"s
therefore an obvious idea to have different parts of track written at
different data transfer rates. (This is best done not by switching transfer
rate during format operation, but by two subsequent formats at different
rates). For example, one can have 9 sectors of 512 bytes on track 0 at 300
KBPS (HD drive) and single 512-bytes sectors at 500 KBPS. (Because this is
an outermost floppy track, using high transfer rate on DD disks will not
push data safety too far).

Although different data transfer rates are entirely in AT domain,
similar mark can be generated with FM and MFM data formats (i.e., 9 MFM
sectors and 1 FM one) on PC and XT. No one of tested bit-copiers was able
to reproduce multirate track, so it"s a good trick for a while.

Page 15

PROTECT_TXT.txt
Nevertheless, 1°d not seen floppy protection based on such mark still.

1.3.9 Data access over gap

Now we"d come to a most popular (and possibly the best) floppy
protection trick, data access over the gaps. Because all sector ID and
data fields are synchronized separately, two bit cells in two subsequent
Ffields can be shifted arbitrary. This shifts are driven by random
variations in WR CLK and drive rotation speed, so they can"t be controlled.
(OF course, one can Imagine ANALOG copying device, what will be able to do
it. 1°d never heard about such birds.) Any read track operation with
sufficiently large length code (say 6) will give "track footprint'”. Number
of different "footprints"™ can be roughly estimated in the following
fashion: Assume that each joint of separately synchronized fields can have
2 different states (obviously, it"s underestimation). On the track of an
ordinary DD Ffloppy there are 19 such joints (9 ID AMs, 9 data AMs, 1 1AM),
so number of different footprints for each track is at least 2719 +
500,000. To make life more interesting for analog copying devices, one can
further enlarge length code (say to 7). This will not increase number of
footprints, but will include track more then once. Because even best device
should start and stop operation somewhere, it will partially corrupt data.
This mark sets single restriction on use of protected disk: key track can"t
be overwritten.

Other, less interesting variation of this idea, is to read next sector
ID AM over the GAP 3 and check whether it changed. Such check forbids
write access to a single sector only. Obviously, protection designer
does not restricted to obtaining "footprints" with read a track command
(and thus to chip-level access to hardware). It can be done simply by
adding dummy sector with length code 6 or 7 at end of track, and job will
be done by BIOS.

Neither one of these checks can be reproduced on standard PC
equipment. Nevertheless, many programs using second variation can be
outsmarted by enlarging GAP 3 after sector of interest and storing sector
ID AM, as it appears for over-gap read, into this gap. If program does not
check exact sectors position on track, it will accept such "copy" as a key
disk.

1.3.10 Crazy ideas

All previously discussed protection tricks had permitted
non-destructive verification. Now let me imagine protection mark, which
can"t be checked or detected by bit-copier without preliminary write access
to key disk. Remember sectors with no ID AM (1.3.5). What will we get if
no other sectors exists on track of interest? (At least, at the same
transfer rate). This sector can"t be read until format a track operation,
which will supply ID AM. Any attempt to step inside such program with
debugger will destroy protection mark, because precious timing of stopping
format operation will be affected by debugging. This simple example shows
that there are protection marks, which can"t be baited out key disk without
destroying part of it content or without inside knowledge of protection
check.

1.4 Timer-based protection tricks

All PCs are equipped with a relatively good timer chip, Intel 8253 or
its functional equivalent. Operating at 1,193,180 Hz, it permits to measure
time intervals with 840 ns resolution (i.e., It can measure execution time
of SINGLE div instruction on 16 MHz 386, which can take up to 2.4 &s). Such
timer is more then adequate for floppy timing measurements (Transmission of
single data byte on fastest possible rate (600 KBS) will take 16 @s), so
precision of such measurements will be limited not by timer resolution, but
by random rotation speed variations.

Page 16

PROTECT_TXT.txt
1.4.1 Sector ordering (interleave) checks

Measuring completion time of subsequently issued read track commands,
one can obtain exact position of each sector on track. In terms of data
bits, you can obtain sector position exact at least to one bit. Because FDC"s
format a track command controls sector position with byte resolution, it
can"t reproduce such exact sector ordering. So, sectors position alone can
serve as protection mark. Nevertheless, this check will be too sensitive to
CPU speed and drive rotation stability and will often reject original key
disk. Therefore, sector position is ordinary used as supplement to other
protection mark(s) (See 1.3.9).

1.4.2 Data transfer rate measurements

FDC data transfer rate selected by diskette control register (3F7h) is
only the initial, or center, frequency used by FDC for data bits decoding.
Special analog circuit, called phase-locked loop (PLL), adjusts it in order
to track rate, at which actual data bits arrive. PLL should tolerate at
least 4% deviation from central frequency (permitted deviation in drives
rotation speed is fi2%). In practice, PLL will cope with 10% deviation on
MFM floppies and almost 100% on FM ones.

Rate of data bits arrival is determined by both angular density of
Ffloppy data and drive rotation speed, so to determine the disk
characteristic (data angular density) one should measure both single
sector transfer time and revolution time. Maximum accuracy of such
measurement can be easily estimated: Single 512-bytes sector will be
transferred at (central) frequency of 500 KBS during 8.2 ms, timer
resolution of 0.84 @s gives relative accuracy of 0.01%. Relative error in
revolution time determination is less at least by an order of magnitude.
Giving a 10 factor for a safety margin, 0.1% seems to be a reasonable
estimation. So, all PC floppy drives will fall in 40 (2*2%/0.1%) different
groups, and Ffloppies written on drive from one group can be easily
distinguished from floppies written on others.

Unfortunately (Hi!), most modern drives will fall into A0.2% region and
thus into 4 groups instead of 40, almost eliminating all "protection™. Some
FDCs (e.g-, my old 1986 WD HDC/FDC) had permitted simple trick with digital
output register (3F2h): output OCh to 3F2h (stop drive A: motor), wait a
while (10 ms), output 1Ch to 3F2h (start drive A: motor) and immediately
perform write operation. Drive rotation speed was slightly less when
nominal for about 20 ms, permitting to write single sector. My new 1990 IDE
HDC/FDC, however, waits until rotation speed reaches nominal, delaying
write operation.

Interesting variations of this mark can be achieved by minor
modifications of PC hardware (See 1.5.3).

1.5 Protection based on special hardware

I am not specialist on copy protection hardware, so discussion here
will be almost invariably based on rumors and speculations.

1.5.1 Modified MFM formats

Intel 8272A FDC chip has no software control over GAPl1, GAP2 and GAP5
length, but will still accept Ffloppies with these gaps differ from
standard values and has ability to measure actual gap length. For example,
GAP2 (post ID gap) can be measured either by read a track command with
length code large then actual sector length or by measuring difference in
completion time of read sector ID and read data instructions. Floppies with
different gap values could be created for PC on other computer systems,
which have control over these parameters. (1°d heard that some DEC systems
do.)

1.5.2 Misplaced data tracks
Page 17

PROTECT_TXT . txt

Some floppy controllers/drives can have more strict control over
read/write head placement then PC does. (I was assured that required
hardware modifications are not too large.) This can be originally done not
for copy protection purposes, but in order to provide ability to read
Ffloppies written on badly adjusted drives. (Again, 1°d heard that ICL FDC
has such ability.) Therefore, key disk for such system can be prepared with
non-standard track positions (and software will verify this). Such disk
could not be verified on other computer system, so this technique could
have only a limited application.

1.5.3 Non-standard transfer rates

As we have seen in 1.4.2 FDC will permit significant variations in
angular data density on track (and has ability to measure them). Minor
modifications of FDC or disk drive give ability to control manually center
frequency of WR CLK oscillator or drive rotation speed and thus give
ability to write data on slightly non-standard (but still acceptable for
most FDCs) data transfer rate.

Some hardware manufacturers (e.g., of scientific equipment with built-in
microcomputers) do this to "cuff" customers. (1°d seen 360 RPM 3= inch
drives, which were therefore incompatible with "normal”™ 300 RPM 3- drives.)

1.6 Protection schemes examples

Inside knowledge of Ffloppy protection schemes shown here based upon my
personal experience with protected programs (unless other specified), so it
can"t be considered to be complete and can"t cover all aspects and all
versions of protection software discussed. All protected programs discussed
here were examined with Copy Unprotector Toolkit (C.U.T.).

1.6.1 IBM Filing Assistant

This is really simple and straightforward protection dated 1986. It has
no any practical significance and shown here only to demonstrate development
of floppy protection art during last years. This "protected" software
checks the presence of sector 8Fh length code 2 on track 39d side 1 of key
Ffloppy. No other checks are made. Because first versions of CopyWrite 1°d
seen were issued in 1985 (and were able to copy such marks), only hopes for
dumbness of ''these russian apes' can stand behind such protection.

1.6.2 SuperLok

Superlok disk 1 was able to acquire was dated 10 oct 86. Protected disk
had contained three tracks with marked "abnormality” (all at head 0). The
first one was track 5, which had unusual interleave and two sectors with
short data, so sector IDs constitute the following sequence (all values are
in hex):

05/00/01/02, 05/00/06/02, 05/00/8A/03, 05/00/02/02, 05/00/07/02,
05/00/65/03, 05/00/03/02, 05/00/08/02, 05/00/04/02, 05/00/09/02,
05/00/05/02

As it turned out, SuperLok does not checks this track at all, so it
constitutes the sort of decoy for interested explorer.

Second protection track on disk was track 12d. It contained sector with
hidden address mark (see 1.3.6) with ID 7B/46/05/00, which SuperLok had
verified with read data command. Other protection check on this track, was
done by read a track command with length code 6 (single 8192-bytes sector)
and 3 (two 4096-bytes sectors). 16-bit checksum of bytes was calculated in
both cases and compared with stored value (see 1.3.9).

Third protection track contained four special sectors. First of them
had hidden sector AM and no data AM, preventing detection of others. Three

Page 18

PROTECT_TXT.txt
sectors had hidden sector AM: 21/47/05/00, A5/86/81/04 and EB/76/EE/04.
After verification of these, SuperLok performed read a track with codes 6
and 3, again calculating 16-bits checksums.

So, SuperLok presents good copy protection. No one of tested
bit-copiers was able to copy such disk "literally” without modification of
SuperLok data areas (and thus, internal knowledge of program). Probably,
such "literal' copy is merely impossible (see 1.3.9).

Later, | had a chance to make a quick glance on SuperLok disk dated
1990. Hidden sector AM checks were removed (?), Read a track access to
protection mark was substituted (?) by additional sector with length code 6
at the very end of track. All (?) floppy access was done by BIOS.

1.6.3 Cops CopyLock 11

COPS CopyLock 11 bases protection checks on timing measurements. It
uses additional sector 00/00/6A/01 on track O head O to store variable
protection data. (COPS CopyLock permits "upgrade"™ protected software
releases without key disk upgrade, so it can"t store any more then serial
number In program body). Second additional sector on track 0 (00/00/F6/02),
which had partially overwritten 1AM, was used to verify sector 1 ID AM over
gap (see 1.3.9). In order to prevent protection bypassing ala 1.3.9,
CopyLock verifies position of all (?) sectors on track by read sector ID
command timing.

Tracks 1 to 6 are very similar: they have two additional sectors at
end of track: XX/00/14/01, which is not used (?) and XX/00/13/02, which
overwrites 1AM and is verified by the same manner as 00/00/F6/02. Tracks 7
to 9 have single additional sector (XX/00/14/01) each. These sectors are
not used (?). On floppy 1"d examined there was surface defect at track 32
head 1, but CopyLock had not verified its existence, so | didn"t think it"s
another protection mark.

This is again example of good protection scheme, although achieved by
different means then 1.6.2. Nevertheless, with aid of C.U.T. 1 was able to
recover unprotected version of program of interest (It was Paradisk from JVv
ParaGraph) during about 2 hours. I didn"t think that development of
CopyLock took less. Although 1 have copy of COPS CopyLock 111, 1 still
hadn®"t time to explore it, so it is to appear. . .

1.6.4 PC Shield

This (homemade) disk protection scheme, devised by Alex Simkin, got a
great advertisement in Soviet mass media. | had an ability to examine half
a dozen versions of this product and thus monitor gradual development of
the program.

First versions of PC Shield had used simple mark of sector, overwriting
IAM on track O solely. This fooled almost all bit-copiers, which had
detected this mark as short data (Half of sector is after index hole, isn"t
it?) and thus destroyed it. Nevertheless, this mark still can be easily
written by ordinary BIOS calls (nhot speaking of new versions of
bit-copiers), and this protection was cracked.

Next step taken was to access first sector®s ID AM over gap (COPS
influence?) Originally, length code 2 (5612 bytes) was selected for this
additional sector. This mark was cracked by technique described in 1.3.9
(again, nothing more then BIOS required). And now, the final step - length
code of additional sector was increased to 6 (SuperLok influence?), making
it difficult (but not impossible, still) to reproduce this mark by BIOS.
Obviously, it"s not an obstacle for a good bit-copier, and C.U.T. will mimic
such mark easily.

Further development of this protection scheme can go into two
directions: inclusion of sector position checks (as in 1.6.3) or full track
over-gap read (as in 1.6.2). Second direction, although requires
reservation of entire track for protection purposes, seems to be more
probable, because such development does not require chip-level access to
FDC (all versions of PC Shield known to me use solely BIOS level floppy

Page 19

PROTECT_TXT.txt
access routines).

2. Hard Disk based protection

Floppy-based keys can provide good level of security, but they are
tiresome for everyday use, waste precious disk drive and can be easily
damaged by improper handling. Therefore, most copy protected packages can be
installed on hard disk, using either hard disk protection marks (this
chapter) or motherboard marks (chapter 3). Due to existence of lot of
incompatible physical hard disk interfaces, hard disk marks are usually
"least common denominator' of various possibilities and are simpler to
tamper with.

2.1 Chip-level protection

This level of hard disk access is highly unlikely to encounter, so we
will briefly discuss AT WDC (Winchester Disk Controller), with which I have
little personal experience. Primary AT WDC could be accessed at addresses
1F0-1F7 and 3F6 (This port is in address space of primary AT FDC, and good
cause for hardware clashes in systems with FDC and WDC implemented on
different add-on boards). Secondary AT WDC occupies addresses 170-177 and
376. AT WDC use IRQ 14 (int 76h with MS-DOS) and do NOT use DMA. Structure
of AT WDC looks very alike to Intel 82062 chip operating in extended mode
with 4 bytes ECC (Error Correction Code) appended to each sector.
(Unfortunately, 1 have only Advance Information Sheet on 82062, so the
description below can®t be precious or complete).

1FO0 - Data register, used to read/write sector buffer (5612 bytes).
Although word access can be used for sector data, only byte one is
acceptable for ECC bytes read/write.

1F1 - read: Error flags register

UAAA,
SBBD3CRC= 0 =1D = 0 3 AC =3 TKO 3 DM =
AAU

3 3 3 AAAA Data AM not found

3 3 3 3 AAAAAAAAAA Recalibrate failed:
3 3 3 s . track 000 not found
3 3 s AAAAAAAAAAAAAAAA Command aborted

3 3o AAAAAAAAAAAAAAAAAAAAAAAAAAAA ID AM not found

3 AA Uncorrectable error
3

> -~ or data AM not found
AA Bad block detect

Fig 2.1a Error flags register (1F1)

1F1 - write: Start reduce write current cylinder / 4, OFFh disables RWC
feature.

1F2 - sector count register. Used to specify number of sectors to
transfer in multi-sector operations - 1, i.e., value of 1 means 2 sectors.
WDC will accept more then one track worth of sectors, updating head and
cylinder number correspondingly. During format a track operation, specifies
number of sectors on track (OFFh is 255 sectors).

1F3 - sector number register. During format a track operation, specifies
value of GAP 1 and GAP 3 (see description of MFM in 1.1.3) minus 3 bytes.

1F4 - 8 low bits of cylinder number. (Tech Help! 4.0 is wrong here)

1F5 - 2 high bits of cylinder number (bits 0-1 are used). Some never WDCs
will accept more then 2 bits in this register, thus supporting hard disks
with more then 1023 cylinders, but most Bl0Ses strip these high bits anyway.

1F6 - Sector/Drive/Head select.

UAAA¢
3 EXT 3 SIZE 3 DRV 3 HEAD
AAU

Page 20

PROTECT_TXT . txt

3 3 = AAAAAAAAAARAAA Head select (0-15)
3 s AMAAAAAAAAAAAAAAAAAAAAAAAAAA Drive select (0-1)
3 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA Sector size code:
3 00 = 256 bytes
3 01 = 512 bytes
3 10 = 1024 bytes
S 11 = 128 bytes
AA 0= Use CRC

1: Use ECC

Fig 2.1b SDH (Sector/Drive/Head) register (1F6).

In original 82062 specification, 3 bits were reserved for head select

field and 2 bits for drive select, but these signals were processed by
external circuits, so it really does not matter.

set

1F7 - read: Status register

UAAARAAA

SBUSY SREADY= WE = SC_ = DRQ = ECC = CIP SERRORZ

AARAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAD
3

3 3 3 3 3 3 AAAA Error summary (OR of
3 3 3 3 3 3 3 all bits in 1F1)

3 3 3 3 3 3 AAAAAAAAAA Command in progress

3 3 3 3 3 AAAAAAAAAAAAAAAA Data is ECC-corrected
3 3 3 3 AAAAAAAAAAAAAAAAAAAAAA Data Request (buffer
3 3 3 s . is walting for data)

3 3 3 o AAAAAAAAAAAAAAAAAAAAAAAAAAAA Seek completed

3 3 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA Write fault

3

> AA WDC ready
AA. WDC busy (all other

bits are invalid)
Fig 2.1c Status register (1F7)

1F7 - write: Command register. Command code is written here. Instruction
of AT FDC (which is superset of 82062), includes the following commands:

6 o o 21 R3-RO Restore to track O
AAU

Lo o R3- RO Seek
AAU

Lo oo o oMo BT Read Sector
AAD

oo oo 1 1o o0 oMo B T Write Sector
ARAAARAAAAARAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAARAAAD

Lo oo o oo oo oo 0 Scan ID
AAY

oo o o 1 o 0 0 0 Write Format
AAU

oo oo o1 o 0 0 0 Diagnose
AAD

.1 o0 0O 21 0 O O 1 Setdrive parameters
AAU

R3-RO determines drive step rate, which is 0.035+0.5*R ms for 5 MHz clock

rate. (My experiments with AT WDC indicate that this value is ignhored by

Page 21

PROTECT_TXT.txt
controller, which positions r/w head at maximum possible speed using Seek
Completed hardware interface line).

I = 0 requests interrupt on DRQ goes active, as well as after completion
of command, 1 = 1 disables interrupt on DRQ active.

M = 1 specifies multi-sector transfer, number of sectors is in sector
count register.

E = 1 disables data correction and passes 4 bytes of ECC along with
sectors data.

T = 0 enables transfer retries, i.e., if specified sector was not found
after 6 revolutions, WDC performs automatic scan ID command, updates internal
cylinder number, performs seek, if necessary, and repeats operation. T =1
causes error if specified sector was not found after 2 revolutions.

3F6 - write: options register. Write 02h to take WDC IRQ 14 off system
bus, 00h to resume normal operations. 04h resets controller.

WDC format command scheme is far less flexible then 8272 one, and permits
to select manually sector number only. Although sector ID AM contains
cylinder, head and size values as well, they are derived from WDC command
registers and can"t be explicitly specified. Because all WDC commands (except
Scan ID command) have implied seek feature, these fields are difficult to
modify.

Features of AT WDC, being obviously advantageous for normal computer
operations, shrinks copy protection possibilities to extra/missing sector
(see 1.3.1) and sector ordering (see 1.4.1) checks. ECC data correction
permits to implement the third hard disk protection trick, data bit changed
in specific position, which will be hidden by ECC.

All these marks can be both generated and verified using BIOS-level disk
access, and so, chip-level access to WDC have no significant advantages that
can justify lack of portability.

2.2 BI10S-level protection

This is obviously the basic level for hard disk based protection.
Sufficient security from TSR software monitoring BIOS int 13h calls can be
reached in this case by tracing int 13h till hard disk BIOS entry point (see
example in Appendix B). Other reason for such elimination of watchers is
possible necessity for accurate operation timing in interleave determination.

2.2.1 Interleave changes

This technique is very alike to the same floppy method described in
1.4.1. Unlike floppies, where sectors are as a rule arranged sequentially
(interleave 1:1), hard disks sectors are often preciously arranged by
low-level formatters to provide fastest possible data transfer rate. It is
therefore more difficult to see interleave mark on hard disk then on floppy.

2.2.2 Changed sector numbers

Again, this is a twin of 1.3.1. Nevertheless, hard disks are ordinary
tight packed with data sectors, so to add sector with non-standard number,
one should remove one of data sectors. This situation can be easily spotted.

2.2.3 Unused disk areas

At the BIOS level, there are two unused areas on almost any hard disk: at
the very beginning and at the very end of drive. First sector of each hard
drive (at least, not SCSI or ESDI one) is occupied by partition table, while
all other sectors on cylinder O track O are not used in IBM and Microsoft
partitioning schemes. Still, this area can be occupied by proprietary
partitioning software. For example, DiskManager (dmdrvr.bin) uses sector
0/0/8 for extended partition table, Olivetty MS-DOS starts first DOS
partition at 0/0/2, etc.

Page 22

PROTECT_TXT.txt
Second unused area is the user diagnostic cylinder, which is located at
the next to last disk cylinder on AT machines and on last cylinder on PS/2
ones (But they are still compatible, aren®t they?) Anything written here
has very little chances to last long, because any low-level disk test program
has right to treat this track as it pleases. (Norton DiskTreet and Gibbson
Research®s SpinRite determine optimal interleave here, 1 believe).

2.3 DOS-level protection

BIOS-level protection on hard disk does not provide too much
alternative, while DOS has convenient (and relatively portable) ways of
accessing DOS partitions (int 25h/26h interface, ExtendedOpen (6Ch) in DOS
4_.0+), which could be used for copy protection.

Structure of DOS filesystem is of common knowledge, so I will only
briefly mention most significant parts of it.

Sector 0 is boot sector. It contains code that loads operation system
and table describing partition characteristics, such as number of sectors,
number of sectors per cluster, number of FATs, number of entries in root
directory.

File allocation table (FAT), which follows, contains 12 or 16 bit value
for each allocation unit (cluster), indicating number of the following
cluster in chain. Usually, more then one (two) FATs are present on disk,
thus providing data security. (Nevertheless, DOS does not treats FAT copies
separately, but merely stores first FAT in additional areas duplicating any
error occurred in 1st copy in all FATs, so security is really imaginatory).

Root directory (following last copy of FAT) contains 32-byte table
(called directory entry) for each file iIn directory. Directory entry contains
name of file, size and modification date of file and starting cluster number.
Other directories use the same allocation methods as ordinary files.

2.3.1 Dependence on cluster number

Standard DOS tools don"t permit control over cluster by cluster
location of files, so this information can be used to encode program image
and/or data. Starting cluster number of file can be obtained by CP/M-style
call 11h (FindFirst via FCB). (CP/M calls can be hidden from most watchers by
performing far call to location 0:0COh with function code in CL instead of
AL). Finding out numbers of other clusters requires browsing thru FAT (See
example in Appendix C).

2.3.2 Unused (reserved) disk areas

Really, there is only one such area at offset OCh of directory entry (10
bytes long). Unfortunately, this area is often used by "DOS-compatible"
operating systems. For example, Digital Research DOS uses this field to store
file password, PC-MOS/386 (Software Links) stores here file owner ID, access
rights and creation date/time.

Another reserved area, which can exist on disk, is the remainder of last
sector in FAT 1, which is preserved by DOS (and even copied to all other
copies of FAT).

2.3.3 Unused (allocation unit rounded) disk areas

Because DOS allocates disk space in clusters (which contain 2”N sectors),
while file size is measured in bytes, most files have unused (and ordinarily
invisible on File system level) tail, which can be used for protection
purposes. Curious bug in DOS, which permits seeks (DOS function 42h) beyond
end-of-file, makes access to this file tail easy even for high-level
languages (See Appendix D).

3. Motherboard and system BIOS based protection
Other part of PC, which, along with floppy and hard disk, is always
Page 23

PROTECT_TXT.txt
available for copy protection, is motherboard. Although motherboards are
now manufactured In many thousands series, almost each of them has (or can
acquire) individual qualities.

3.1 Data-based tricks

Each motherboard has it"s own BIOS. So it can be used for copy
protection, although we can expect this primarily from hardware manufactures
and not from independent software developers. (So the stuffing system BIOS
with a lot of cryptic undocumented functions and tables, which is a dear
occupation of big blue, is a sort of copy protection).

Other data area available on motherboards, is non-volatile CMOS memory,
which as a rule has a lot (half a dozen bytes) unused space in it. Some chip
sets (e.g., from C&T) can map part of CMOS memory into system ROM address
space, thus creating appearance of "software reprogramming system ROM BIOS™.

3.2 Time-based tricks

More interesting protection marks are ones based on internal timing of
system board. Three basic subsystems are available for such measurements:
CPU, memory subsystem, 1/0 subsystem (See appendix E). Differences can be
actually surprisingly large (See table 3.2).

UAA
> System o2 CPU 2 Memory = 1/0 2
AAA

3 25 MHz 80386 (A) 3 35972 3 24576 3 47292 =
3 25 MHz 80386 (B) 3 35972 3 24576 3 49154 =
3 20 MHz 80386 3 44958 3 30112 3 59990 =
3 12 MHz 80286 3 3544 3 41018 3 46646 =

AAAAAAAAAAAAAAAAAAAAARAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU
Table 3.2 Motherboard marks of four different machines.

Values shown in table 3.2 are an average for multiply runs of program
from Appendix E. Actual values differ from mean ones by about fi4. Systems (A)
and (B) have had two sequential manufacturer®s numbers, but still can be
easily distinguished by 1/0 mark (Port 0Ch, 1st DMA controller was used). It
should be also noted, what 1/0 mark is very sensitive to CPU mode of
operation (real vs. protected), while CPU and memory marks are almost equal
in both modes.

Glossary
82062 Intel WDC
8237A Intel DMA controller
8253 Intel timer chip
8259A Intel interrupt controller
8272A Intel FDC
BC IBM bad track error, bit in ST2
BIOS Basic Input/Output System
CcB Controller busy, bit in MSR
Cluster Allocation unit in FAT filesystem, See 2.3
CM Control mark, bit in ST2
CPU Central Processing Unit, e.g., 8086, 80286, . . .
CRC Cyclic Redundancy Code
DxB Drive x busy, bit in MSR
DD Data error, bit in ST2
DE Data error, bit in ST1
DIO Data Input/Output, bit In MSR
DMA Direct Memory Access

Page 24

PROTECT_TXT.txt
Double Density See MFM

DR Data Register of 8272A. See 1.2.1

DTL Data transfer length, 8272A command parameter. See 1.2.3

EC Equipment check, bit in STO

ECC Error correction code

EN End of track error, bit in ST1

EOT End of track, 8272A command parameter. See 1.2.3

FAT File allocation table. See 2.3

FDC Floppy disk controller. See 1.1

FM Frequency modulation. See 1.1

FT Fault, bit in ST3.

GPL Gap length, 8272A command parameter. See 1.2.3

HDC Hard Disk Controller

HLT Head load time, 8272A command parameter. See 1.2.3

HUT Head unload time, 8272A command parameter. See 1.2.3

1AM Index address mark. See 1.1.3

IC Interrupt code, 2 bits in STO

IRR Interrupt request register of 8259A.

IRQ Interrupt request signal

Jv Joint Venture, "Sovmestnoe predprijatie"

Kb Kilobyte, 1024 bytes

KBPS Thousands of bits per second

LSB Least significant bit

MA Missing address mark, bit in ST1

MD Missing data address mark, bit in ST2

MFM Modified frequency modulation. See 1.1

MSB Most significant bit

MSR Main Status Register of 8272A. See 1.2.1

ND Sector no found, bit in ST1
or non-DMA, 8272A command parameter. See 1.2.3

NDM non-DMA transfer, bit in MSR

NR Not ready, bit in STO

NW Write protect error, bit in ST1

OR Overrun error, bit in ST1

PLL Phase locked loop, circuit in FDC. See 1.4.2

RDY Ready, bit in ST3

RPM Revolutions per minute

RQM Request for master, bit in MSR

RwC Reduce write current, technique used in MFM recording

SC Sector count, 8272A command parameter. See 1.2.3

SE Seek ended, bit in STO

SH Scan Hit, bit in ST2

Single Density See FM

SN Scan not satisfied, bit in ST2

SRT Step rate interval, 8272A command parameter. See 1.2.3

STO, ST1,

ST2, ST3 Status bytes 0-3 of 8272A. See 1.2.2

STP Step value, 8272A command parameter. See 1.2.3

TO Track 0, bit in ST3

TC Terminal count - signal raised by 8237A when channel
transfer count reaches zero

TS Two sided, bit in ST3

WC Cylinder address error, bit in ST2

wDC Winchester disk controller

WP Write protect, bit in ST3

Appendix A. Simple 8272A program

Program sample text is in test fdc.c. It requires Turbo C 2.0 and Turbo
Assembler (any version) to compile. Minimum hardware required to run this
sample is 8 MHz/0 WS 80286 machine equipped with at least one floppy drive,
Ffloppy drive to run test on is specified by program argument (0 for A:, 1 for

Page 25

PROTECT_TXT.txt
B:). This test can be used on secondary FDC as well, provided that FDC_BASE
in source file is changed to 0x370. *"T" command (Analyse a track) will work
incorrectly with 300 RPM drives (360K, 720K, 1.44M) until REVOLUTION_TIME in
program source will not be chnged to 200L*2*1193 (but when it will work
incorrectly with 1.2M drives).

Appendix B. Simple HDC exerciser program

Program sample text is in file hd_scan.c, which again requires TC 2.0 and
TASM to compile. It accepts BIOS drive ID (80 for 1st drive, 81 for second).
IT this test hangs after printing the message:

"Cyls = XXX, Heads = XXX, Sectors = XXX,

all disk caching programs should be removed from memory prior to running
this test.

Appendix C. How to find out cluster number

Program text s in file cluster.c, again TC 2.0 and TASM are required to
compile it. Fully qualified file name (i.e., including drive and directory,
even for file in current directory) should be specified as parameter.
Although this sample was tested under MS DOS 3.20, 3.30, 4.00 and 5.00
(beta), 1t may not work under other MS DOS versions or compatible systems,
because it relies on structure of undocumented DisklnfoBlock.

Appendix D. Accessing file tail
Program text is in Ffile tail.c. Although any ANS1 compiler should accept
it, this sample relies on undocumented behavior of seek() function and may
not work with compilers other then TC 2.0.
Appendix E. How to distinguish motherboards
Program text is in file sysboard.c, TC 2.0 and TASM required to compile.

Current value of INSTRUCTIONS parameter (16384) will cause time counter to
overflow on anything less then 20 MHz 80386.

Page 26

